
More on Geometry

I. Hrivnacova, IJCLab Orsay

Credits: T. Nikitina, J.Apostolakis, G.Cosmo, A. Lechner (CERN), M.
Asai (SLAC) and others

Geant4 IN2P3 and ED PHENIICS Tutorial,
16 – 20 May 2022

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 2

Outline

● More on detector description
● Repeated placements
● Special techniques of placements
● Parallel geometries

● Geometry checking tools
● Optimization techniques

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 3

Repeated Placements

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 4

Physical Volumes

● Physical volume represents a placement of a daughter volume in its mother
volume

● It holds the information about the position of the daughter in the mother reference
frame

● Physical volume types:
● Simple placement: “placement”
● Repeated placement: “replica”, “division”, “parameterised volume”

● A mother volume can contain either
● More simple volume placements OR
● One repeated volume

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 5

Replicated Volumes

● The mother volume is sliced into replicas, all of the
same size and dimensions.

● Depending on the mother shape, replication may
occur along:

● Cartesian axes (X, Y, Z) – slices are considered
perpendicular to the axis of replication

– Coordinate system at the center of each replica
● Radial axis (Rho) – cons/tubs sections centered on the

origin and un-rotated
– Coordinate system same as the mother

● Phi axis (Phi) – phi sections or wedges, of cons/tubs
form

– Coordinate system rotated such as that the X axis
bisects the angle made by each wedge

a daughter
logical volume to
be replicated

mother volume

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 6

G4PVReplica

● G4PVReplica constructor:

● Features and restrictions:
● Replicas can be placed inside other replicas
● Normal placement volumes can be placed inside replicas, assuming no

intersection/overlaps with the mother volume or with other replicas
● No volume can be placed inside a radial replication
● Parameterised volumes cannot be placed inside a replica
● An offset may be used only for tube/cone segment

G4PVReplica(
 const G4String& name, // physical volume name
 G4LogicalVolume* currentLV, // volume being replicated
 G4LogicalVolume* motherLV, // mother logical volume
 const EAxis axis, // axis of replication
 const G4int nofReplicas, // number of replicas
 const G4double width, // replication width
 const G4double offset = 0); // offset (optional)

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 7

Replica – axis, width, offset

● Cartesian axes - kXAxis, kYAxis, kZAxis
● Offset shall not be used
● Center of n-th daughter is given as

 -width*(nReplicas-1)*0.5+n*width

● Radial axis - kRho
● Center of n-th daughter is given as

 width*(n+0.5)+offset

● Phi axis - kPhi
● Center of n-th daughter is given as

 width*(n+0.5)+offset

width

7

offset

offset

width

width

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 8

Example

// mother tube volume
G4double dphi = 360.*deg;
G4VSolid* tubeS
 = new G4Tubs("tube", 20*cm, 50*cm, 30*cm, 0., dphi);
G4LogicalVolume* tubeLV
 = new G4LogicalVolume(tubeS, Ar, "tube");
new G4PVPlacement(0, G4ThreeVector(),
 tubeLV, "tube", worldLV, false, 0);

// division in 6 phi segments
G4double divDphi = dphi/6.;
G4VSolid* divTubeS
 = new G4Tubs("divTube", 20*cm, 50*cm, 30*cm,
 -divDphi/2., divDphi);
G4LogicalVolume* divTubeLV
 = new G4LogicalVolume(divTubeS, Ar, "divTube");
new G4PVReplica("divTube", divTubeLV, tubeLV, kPhi, 6, divDphi);

● Tube replicated in phi axis

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 9

Divisions

● Implemented as “special” kind of parameterised
volumes:

● G4PVDivision class derived from
G4PVParameterised

● But simpler to define as the parameterisation is
calculated automatically using the values provided in
input

● Similar to G4PVReplica
● But it allows gaps in between mother and daughter

volumes or between daughters (offset)
● Applies to CSG-like and some specific solids only:

● Box, tubs, cons, para, trd, polycone, polyhedra

mother volume

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 10

Parameterised Volumes

● Defined by G4PVParameterised
● More general than G4PVReplica and

G4PVDivisions
● The properties of the “replicas” in their mother

volume are defined in a user parameterisation
class derived from G4VPVParameterisation

● The properties which must be always
provided:

● Where it is positioned (transformation, rotation)
● Optional:

● The size of the solid (dimensions)
● The type of the solid, material, sensitivity, vis

attributes
● The properties of the “replicas” are defined via

their copyNumber

4

0
1
2

3

5
6

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 11

Example
● Basic example B2: the same geometry with simple placements (B2a) and

parameterised volume (B2b)

See the implementation details in backup
slides

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 12

Special Techniques of Placements
Assemblies, Reflections

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 13

Grouping Volumes

● To represent a regular pattern of positioned volumes, composing a more or
less complex structure

● structures which are hard to describe with simple replicas or parameterised
volumes

● structures which may consist of different shapes
● too densely positioned to utilize a mother volume

● Assembly volume
● G4AssemblyVolume class
● acts as an envelope for its daughter volumes
● its role is over once its logical volume has been placed
● daughter physical volumes become independent copies in the final structure

● Participating daughter logical volumes are treated as triplets
● logical volume
● translation w.r.t. envelop
● rotation w.r.t. envelop

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 14

G4AssemblyVolume: Example
// Define the green box
G4VSolid* longBoxS = new G4Box("longBox", ...);
G4LogicalVolume* longBoxLV
 = new G4LogicalVolume(longBoxS, Pb, "longBox");
// Define the smallbox -> smallBoxLV
// Define the tube -> tubeLV

// Make assembly
G4AssemblyVolume* myAssembly = new G4AssemblyVolume();
// Define transformations of volume inside the assembly:
// lbPosition, lbRotation, ...
myAssembly->AddPlacedVolume(longBoxLV,lbPosition, lbRotation);
myAssembly->AddPlacedVolume(smallBoxLV,sbPosition, sbRotation);
myAssembly->AddPlacedVolume(tubeLV,tubePosition, tubeRotation);

// Now place the assemblies
for (G4int int i = 0; i < 4; i++) {
 // Define the position and rotation of each assembly
 // ithPosition, ithRotation
 myAssembly->MakeImprint(worldLV, ithPosition, ithRotation);
}

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 15

Reflecting volumes

● Let's take an example of a
pair of mirror symmetric
volumes.

● Such geometry cannot be
made by parallel
transformation or 180 degree
rotation.

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 16

Reflecting volumes

● Hierarchies of volumes based on CSG or specific solids can be reflected by
means of G4ReflectionFactory

● Singleton object using G4ReflectedSolid for generating placements of
reflected volumes

● The functions Place(..) or Replicate(..) should be used instead of
G4PVPlacement or G4PVReplica when placing or replicating a volume
in a volume hierarchy containing reflections

– See more details in backup slides
● G4ReflectedSolid

● Utility class representing a solid shifted from its original reference frame
to a new symmetric one

● The reflection (G4Reflect[X/Y/Z]3D) is applied directly to a solid, and a
reflected solid is placed with “pure” rotation and translation

● Reflections can be applied to CSG and specific solids

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 17

Parallel Geometries

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 18

Parallel Navigation

● Occasionally, it may not be straightforward to define attributes, like
sensitivity, importance or envelope to be assigned to volumes in the mass
geometry

● Typically applicable to geometries imported from CAD, GDML, DICOM, etc.
● Parallel navigation functionality allows to define more than one overlapping

geometry setups (worlds) simultaneously
● The G4Transportation process can act on all worlds simultaneously
● A step is limited not only by the boundary of the original mass geometry but also

by the boundaries of each parallel geometry
● Materials, production thresholds and EM field are used only from the mass

geometry
● In a parallel world, the user can define volumes in arbitrary manner with

sensitivity, regions with shower parameterization, and/or importance field for
biasing

● Volumes in different worlds may overlap

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 19

Example RE06

● extended/runAndEvent/RE06
● Mass geometry

● Sandwich of rectangular
absorbers and scintillators

● Parallel scoring geometry
● Cylindrical layers

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 20

HEP use case
● A parallel world may be associated only to some limited types of particles
● May define geometries of different levels of detail for different particle types
● Example for sampling calorimeter: the mass world defines only the crude

geometry with averaged material, while a parallel world with all the detailed
geometry. Real materials in detailed parallel world geometry are associated
with all particle types except e+, e- and gamma

● e+, e- and gamma do not see volume boundaries defined in the parallel world,
i.e. their steps won’t be limited

● Shower parameterisations may have their own geometry

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 21

Geometry Checking Tools

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 22

Debugging Geometries

● A protruding volume is a contained daughter volume which actually
protrudes from its mother volume.

● Volumes are also often positioned in a same volume with the intent of not
provoking intersections between themselves. When volumes in a common
mother actually intersect themselves are defined as overlapping.

● Geant4 does not allow for malformed geometries, neither protruding nor
overlapping.

● The behavior of navigation is unpredictable for such cases.
● The problem of detecting overlaps between volumes is bounded by the

complexity of the solid models description.
● Utilities are provided for detecting wrong positioning

● Optional checks at construction
● Kernel run-time commands
● Graphical tools (vis commands)

protruding

overlapping

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 23

Optional Checks at Construction
● The option to check overlaps at geometry construction can be activated in

the G4PVPlacement constructor :

● Some number of points are then randomly sampled on the surface of
creating volume.

● Each of these points are examined
● If it is outside of the mother volume, or
● If it is inside of already existing other volumes in the same mother volume.

● This check requires lots of CPU time, but it is worth to try at least once when
you implement your geometry of some complexity.

G4PVPlacement(
 G4RotationMatrix* rotation, // rotation
 const G4ThreeVector& translation, // translation
 G4LogicalVolume* currentLV, // volume being placed
 const G4String& name, // physical volume name
 G4LogicalVolume* motherLV, // mother logical volume
 G4bool many, // not used
 G4int copyNumber, // position (copy) number
 G4bool surfaceCheck = false); // option to activate
 // overlap checking

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 24

Optional Checks at Construction - 2
● Alternatively, one can use explicitly the overlaps check for a simple

physical volume:

 G4bool CheckOverlaps(G4int res=1000, G4double tol=0.,
 G4bool verbose=true, G4int errMax=1)

● Verifies if the placed volume is overlapping with existing daughters or
with the mother volume.

● Returns true if the volume is overlapping.

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 25

Debugging Run-time Commands
● Verification of geometry for overlapping regions recursively through the

volumes tree can be a run with a built-in run-time command:
● geometry/test/run

● Volumes are recursively asked to verify for overlaps for points generated on
the surface against their respective mother and volumes at the same level,
performing for daughters and daughters of daughters etc.

● It may take a very long time in complex geomteries
● Parameters which can be tuned:

– recursion_start – starting depth level (default 0)
– recursion_depth – the total depth level for checking overlaps (default -1,

which mean all levels)
– tolerance – tolerance by which overlaps should not be reported.
– resolution - the number of points on surface to be generated and

checked for each volume (default is '10000')
– maximum_errors - the threshold for the number of errors to be reported

for a single volume (default is 1)

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 26

Debugging Run-time Commands (2)

● Example of a test output

GeomTest: no daughter volume extending outside mother detected.
GeomTest Error: Overlapping daughter volumes
 The volumes Tracker[0] and Overlap[0],
 both daughters of volume World[0],

 appear to overlap at the following points in global coordinates: (list truncated)
 length (cm) ----- start position (cm) ----- ----- end position (cm) -----
 240 -240 -145.5 -145.5 0 -145.5 -145.5
Which in the mother coordinate system are:
 length (cm) ----- start position (cm) ----- ----- end position (cm) -----
 . . .
Which in the coordinate system of Tracker[0] are:
 length (cm) ----- start position (cm) ----- ----- end position (cm) -----
 . . .
Which in the coordinate system of Overlap[0] are:
 length (cm) ----- start position (cm) ----- ----- end position (cm) -----

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 27

Summary

● Several classes can be used to define a repeated placement: G4PVReplica,
G4PVDivisin and G4PVParameterisedVolume

● The volumes can be grouped together in a G4AssemblyVolume object and
the whole group can be placed as a single “virtual” volume

● The volume hierarchies can be reflected using G4ReflectionFactory
● Geant4 does not allow for malformed geometries, neither protruding nor

overlapping
● Geometry checking tools are available to detect such cases

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 28

Backup

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 29

Divisions

● Implemented as “special” kind of parameterised
volumes:

● G4PVDivision class derived from
G4PVParameterised

● But simpler to define as the parameterisation is
calculated automatically using the values provided in
input

● Similar to G4PVReplica
● But it allows gaps in between mother and daughter

volumes or between daughters (offset)
● Applies to CSG-like and some specific solids only:

● Box, tubs, cons, para, trd, polycone, polyhedra

mother volume

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 30

G4PVDivision (1)

● Constructor 1:

● The size (width) of the daughter volume is calculated as

 ((size of mother) - offset) / nofDivisions

G4PVDivision(
 const G4String& name, // physical volume name
 G4LogicalVolume* currentLV, // volume being replicated
 G4LogicalVolume* motherLV, // mother logical volume
 const EAxis axis, // axis of replication
 const G4int nofDivisions, // number of divisions
 const G4double offset); // division offset

nDivisionsoffset

nofDivisions

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 31

G4PVDivision (2)

● Constructor 2:

● The number of daughters volumes is calculated as

 ((size of mother) - offset) / nofDivisions

G4PVDivision(
 const G4String& name, // physical volume name
 G4LogicalVolume* currentLV, // volume being replicated
 G4LogicalVolume* motherLV, // mother logical volume
 const EAxis axis, // axis of replication
 const G4double width, // division width
 const G4double offset); // division offset

offset widthAs many divisions as
width and offset allow

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 32

G4PVDivision (3)

● Constructor 3:

● nofDivisions daughters of width thickness

G4PVDivision(
 const G4String& name, // physical volume name
 G4LogicalVolume* currentLV, // volume being replicated
 G4LogicalVolume* motherLV, // mother logical volume
 const EAxis axis, // axis of replication
 const G4int nofDivisions, // number of divisions
 const G4double width, // division width
 const G4double offset); // division offset

offset width

nofDivisions

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 33

G4PVDivision (4)

● It is also possible to add const G4double halfGap paramater in addition to
those in previous constructors

nDivisions
offset

halfGap

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 34

Parameterised Volumes

● Defined by G4PVParameterised
● More general than G4PVReplica and

G4PVDivisions
● The properties of the “replicas” in their mother

volume are defined in a user parameterisation
class derived from G4VPVParameterisation

● The properties which must be always
provided:

● Where it is positioned (transformation, rotation)
● Optional:

● The size of the solid (dimensions)
● The type of the solid, material, sensitivity, vis

attributes
● The properties of the “replicas” are defined via

their copyNumber

4

0
1
2

3

5
6

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 35

Example
● Basic example B2: the same geometry with simple placements (B2a) and

parameterised volume (B2b)

Six tracking chambers of increasing
transverse size

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 36

G4PVParameterised

● G4PVParemeterised constructor:
●

●

●

●

●

●

● Features and restrictions:
● Replicates the volume nofReplicas times using the parameterisation

myParam, within the mother volume
● The positioning of the replicas is dominant along the specified Cartesian axis

– If kUndefined is specified as axis, 3D voxelisation for optimisation of the
geometry is adopted

G4PVParameterised(
 const G4String& name, // physical volume name
 G4LogicalVolume* currentLV, // volume being replicated
 G4LogicalVolume* motherLV, // mother logical volume
 const EAxis axis, // axis of replication
 const G4int nofReplicas, // number of replicas
 G4VPVParameterisation* myParam); // parameterisation

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 37

MyParameterisation.hh

class B2bChamberParameterisation : public G4VPVParameterisation
{
 public:
 B2bChamberParameterisation(..);
 virtual ~B2bChamberParameterisation();

 virtual void ComputeTransformation(
 const G4int copyNo,
 G4VPhysicalVolume* physVol) const;
 Virtual void ComputeDimensions (
 G4Tubs & trackerLayer, const G4int copyNo,
 const G4VPhysicalVolume* physVol) const;
 private:
 // Dummy declarations to get rid of warnings ...
 // Data members of the class (with self-descriptive names)
};

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 38

MyParameterisation.cc
void B2bChamberParameterisation::ComputeTransformation(
 const G4int copyNo, G4VPhysicalVolume* physVol) const
{
 // Note: copyNo will start with zero!
 G4double zPosition = fStartZ + copyNo * fSpacing;
 G4ThreeVector origin(0, 0, zPosition);
 physVol->SetTranslation(origin);
 physVol->SetRotation(0);
}

void B2bChamberParameterisation::ComputeDimensions(
 G4Tubs& trackerChamber, const G4int copyNo,
 const G4VPhysicalVolume*) const
{
 // Note: copyNo will start with zero!
 G4double rmax = fRmaxFirst + copyNo * fRmaxIncr;
 trackerChamber.SetInnerRadius(0);
 trackerChamber.SetOuterRadius(rmax);
 trackerChamber.SetZHalfLength(fHalfWidth);
 trackerChamber.SetStartPhiAngle(0.*deg);
 trackerChamber.SetDeltaPhiAngle(360.*deg);
}

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 39

MyDetectorConstruction.cc

void B2bDetectorConstruction:Construct {
 ...
 G4Tubs* chamberS
 = new G4Tubs("tracker",0, 100*cm, 100*cm, 0.*deg, 360.*deg);
 fLogicChamber
 = new G4LogicalVolume(chamberS,fChamberMaterial,"Chamber",0,0,0);

 G4VPVParameterisation* chamberParam
 = new B2bChamberParameterisation(..);

 new G4PVParameterised(
 "Chamber", // their name
 fLogicChamber, // their logical volume
 trackerLV, // Mother logical volume
 kZAxis, // Are placed along this axis
 NbOfChambers, // Number of chambers
 chamberParam, // The parametrisation
 fCheckOverlaps); // checking overlaps
}

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 40

G4AssemblyVolume

● Helper class to combine daughter logical volumes in arbitrary way
● Imprints of the assembly volume are made inside a mother logical volume

through G4AssemblyVolume::MakeImprint(...)
● Each physical volume name is generated automatically

● Format: av_WWW_impr_XXX_YYY_ZZZ
– WWW – assembly volume instance number
– XXX – assembly volume imprint number
– YYY – name of the placed logical volume in the assembly
– ZZZ – index of the associated logical volume

● Generated physical volumes (and related transformations) are automatically
managed (creation and destruction)

G4AssemblyVolume::AddPlacedVolume(
 G4LogicalVolume* volume,
 G4ThreeVector& translation,
 G4RotationMatrix* rotation);

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 41

Reflecting volumes

● Let's take an example of a
pair of mirror symmetric
volumes.

● Such geometry cannot be
made by parallel
transformation or 180 degree
rotation.

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 42

Reflecting volumes

● Hierarchies of volumes based on CSG or specific solids can be reflected by
means of G4ReflectionFactory

● Singleton object using G4ReflectedSolid for generating placements of
reflected volumes

● The functions Place(..) or Replicate(..) should be used instead of
G4PVPlacement or G4PVReplica when placing or replicating a volume
in a volume hierarchy containing reflections

– See more details in backup slides
● G4ReflectedSolid

● Utility class representing a solid shifted from its original reference frame
to a new symmetric one

● The reflection (G4Reflect[X/Y/Z]3D) is applied directly to a solid, and a
reflected solid is placed with “pure” rotation and translation

● Reflections can be applied to CSG and specific solids

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 43

Reflecting hierarchies of volumes - 1

● Used for normal placements:
1) Performs the transformation decomposition

2) Generates a new reflected solid and logical volume.
● Retrieves it from a map if the reflected object is already created.

3) Transforms any daughter and places them in the given mother

4) Returns a pair of physical volumes, the second being a placement in the
reflected mother

● G4PhysicalVolumesPair is
● std::map<G4VPhysicalVolume*,G4VPhysicalVolume*>

G4PhysicalVolumesPair G4ReflectionFactory::Place(
 const G4Transform3D& transform3D, // the transformation
 const G4String& name, // the name
 G4LogicalVolume* currentLV, // the logical volume
 G4LogicalVolume* motherLV, // the mother volume
 G4bool noBool, // currently unused
 G4int copyNo); // optional copy number

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 16 - 20 May 2022 44

Reflecting hierarchies of volumes - 2

● Creates replicas in the given mother volume
● Returns a pair of physical volumes, the second being a replica in the

reflected mother

G4PhysicalVolumesPair G4ReflectionFactory::Replicate(
 const G4String& name, // the name
 G4LogicalVolume* currentLV, // the logical volume
 G4LogicalVolume* motherLV, // the mother volume
 Eaxis axis, // axis of replication
 G4int nofReplica, // number of replicas
 G4double width, // width of single replica
 G4int offset = 0); // offset (optional)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

