
Multithreading - 1

I. Hrivnacova, IJCLab Orsay

Credits: A. Dotti, M. Asai (SLAC), M. Verderi (LLR)

Geant4 IN2P3 and ED PHENIICS Tutorial, 
16 – 20 May 2022, IJCLab



I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 2

Outline

● Introduction
● What is a thread
● Why multithreading
● Multithreading in Geant4
● Multithreading Geant4 application



I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 3

Introduction

● Modern CPU architectures: 
● Increasing number of processors & memory, but memory cost scales 

slower => Less memory/core 

● Memory and its access will limit number of concurrent 
processes running on single chip

● Solution: add parallelism in the application code

● Geant4 needs back-compatibility with user code and simple

approach (physicists != computer scientists)
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What Is a Thread
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What Is a Thread ?

● Sequential application - one core
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What Is a Thread ? (2)

● Sequential application – start N (cores/CPUs) copies of an 
application if it fits in memory
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What Is a Thread ? (3)

● MT application – a single application starts threads.
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What Is a Thread ? (4)

● Memory reduction: when shared objects are introduced, memory of N 
threads is less than memory used by N copies of the application
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Why Multithreading
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Multithreading in Geant4
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Multi-threading in Geant4

● Each worker thread proceeds 
independently

● Initializes its state from a master 
thread

● Identifies its part of the work 
(events)

● Generates hits in its own hits-
collection

● Geant4 automatically performs 
reductions (accumulation) when 
using scorers, G4Run derived 
classes or g4tools

● General design choice:  event level parallelism via multi-threading 
(POSIX based, in 10.5 migration from POSIX threading to C++11 
threading)
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Simplified Master / Worker Model

● A Geant4 application (in MT mode) can be seen as simple finite 
state machine
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Simplified Master / Worker Model (2)

● A Geant4 application (in MT mode) can be seen as simple finite 
state machine

● Threads do not exists before first /run/beamOn
● When master starts the first run spawns threads and distribute 

work!
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Shared Memory

● To reduce memory footprint threads must share at least part of 
the objects

● General rule in Geant4: threads can share whatever is invariant 
during the event loop (e.g. threads do not change these objects 
while processing events, these are used “read-only”)

● Geometry definition

● Electromagnetic physics tables
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Shared ? Private?

● Shared by all threads: stable 
during the event loop

● Geometry
● Particle definition
● Cross-section tables
● User-initialization classes

● Thread-local: dynamically 
changing for every 
event/track/step

● All transient objects such as 
run, event, track, step, 
trajectory, hit, etc.

● Physics processes
● Sensitive detectors
● User-action classes

● In the multi-threaded mode
● data that is stable during the event loop is shared among threads, while

● data that is transient during the event loop is thread-local. 
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Geant4 MT
● Event level parallelism via multithreading (POSIX based)
● Built on top of experience of G4MT prototypes

● Capitalizing the work started back in 2009 by X.Dong and G.Cooperman, 
Northeastern University

● Main design driving goal: minimize user-code changes
● Integrated into Version 10.0 codebase
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Geant4 10.00

● This is the first release ( December 2013) with multithreading 
capability with event parallelism

● Two build options: Multithreaded and Sequential mode, selection via a 
cmake configuration option -DGEANT4_BUILD_MULTITHREADED=ON

● Maximum back-compatibility with user code - however some 
API had to changed to enable MT (this is why this is a major 
release)

● An application developed for Geant4 version 9.6 can be used without 
changing the code in sequential mode (except for other mandatory 
modifications not MT-related)

● An MT-ready application, can also run in sequential mode without 
changing the code (but not vice-versa) 
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Multithreading Geant4 
Application
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Geant4 MT and User Application

● Geant4 provides building 
blocks (bricks)

● Users have to assemble 
them to describe their 
scenario in their application 
program 
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Towards MT Application

● Geant4 kernel takes care of steering event processing on 
workers

● Use new G4RunManagerFactory class to create a G4RunManager 
derived class for steering MT run

● New Geant4 virtual methods/classes to be implemented in a 
user code

● G4VUserActionInitialization – mandatory

● G4VUserDetectorConstruction::ConstructSDandField() - for applications 
with field and/or sensitive detectors

● G4UserWorkerThreadInitialization – optional, for applications which 
want/need to customize some aspects of thread behavior 

● Make your application thread-safe
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Geant4 Kernel & User Application
In Sequential Mode 

main()Create G4RunManager

Initialize

RunBeamOn

MyEventAction

MyStackingAction

MyTrackingAction

MyDetectorConstruction

MyPhysicsList

MySteppingAction

Delete G4RunManager

MyPrimaryGenerator

MyActionInitialization

Run  :: BeamOn
Event 1

Initialization
 (detector setup and 
  physics processes)

Primaries => Stack

Track 1  

Step 1 Step N ...

Track 2  … Track N

Event 2 … Event N 

Run :: Initialize
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User Application and Geant4 Kernel
In Sequential Mode 

User Application Geant4 kernel User Application

Geant4 kernel User Application Geant4 kernel User Application

Geant4 kernel User Application

● Sequential application – start N (cores/CPUs) copies of an application if it fits in 
memory
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MyDetectorConstruction

main()Create G4MTRunManager

Initialize

RunBeamOn

MyEventAction

MyStackingAction

MyTrackingAction

MyDetectorConstruction

MySteppingAction

Delete G4MTRunManager

Master (shared)

MyPrimaryGenerator
MyPhysicsList
MyPhysicsList
MyActionInitialization

Thread 0

Event N1

Event NN

...

MyRunAction 

MyEventAction

MyStackingAction

MyTrackingAction

MySteppingAction

Thread 1

Event M1 

Event MN

...

MyRunAction

MyRunAction 

Geant4 Kernel
Create/Set

BuildOnMaster

Build

User Application and Geant4 Kernel
In MT Mode
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main()

● Geant4 does not provide the main().
● In your main(), you have to

● Construct G4RunManager derived class using G4RunManagerFactory 

● Define your initialization classes: MyDetectorConstruction and 
MyPhysicsList and set them to G4RunManager

● Define your primary generator class (MyPrimaryGenerator) using your 
MyActionInitialization class and set it to G4RunManager

● You can also
● Define optional user action classes and set them to G4RunManager 

using your ActionInitialization class 

● Define Geant4 visualization and (G)UI session via G4VisExecutive and 
G4UIExecutive and/or your persistency manager
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main() - sequential
#include "DetectorConstruction.hh"
#include "ActionInitialization.hh"

#include "G4RunManager.hh"
#include "FTFP_BERT.hh"

int main(int argc,char** argv)
{
  // Create User Interface and enter in interactive session (1)

  // Construct the default run manager
  G4RunManager* runManager = new G4RunManager;

  // Detector construction
  runManager->SetUserInitialization(new ED::DetectorConstruction());

  // Physics list
  G4VModularPhysicsList* physicsList = new FTFP_BERT;
  runManager->SetUserInitialization(physicsList);

  // User action initialization
  runManager->SetUserInitialization(new ED::ActionInitialization());

  // Create User Interface and enter in interactive session
  ...
}

exampleED.cc
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main() - MT
#include "DetectorConstruction.hh"
#include "ActionInitialization.hh"

#include "G4RunManagerFactory.hh"
#include "FTFP_BERT.hh"

int main(int argc,char** argv)
{
  // Create User Interface and enter in interactive session (1)
  ...
  // Construct the default run manager
  auto* runManager =
    G4RunManagerFactory::CreateRunManager(G4RunManagerType::Default);

  // Detector construction
  runManager->SetUserInitialization(new ED::DetectorConstruction());

  // Physics list
  G4VModularPhysicsList* physicsList = new FTFP_BERT;
  runManager->SetUserInitialization(physicsList);

  // User action initialization
  runManager->SetUserInitialization(new ED::ActionInitialization());

  // Create User Interface and enter in interactive session
  ...
}
  

exampleED.cc

The default run 
manager type 
supports MT
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User Action Initialization

● The initialization and action classes which are called during 
event processing MUST be defined all together in the user 
action initialization class derived from 
G4VUserActionInitialization abstract base class.

● Note that use of this class is mandatory for multithreading processing

● Implement the virtual method Build(), where you
● Instantiate all initialization and action classes called during event 

processing
● This method is called in MT mode on the workers

● Optionally, implement the virtual method BuildForMaster(), 
where you 

● Instantiate all initialization and action classes called during event 
processing which should be build on master

● Typically, RunAction is created both on master and workers



I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 30

#include "G4VUserActionInitialization.hh"

namespace ED
{

class ActionInitialization : public G4VUserActionInitialization
{
  public:
    ActionInitialization();
    virtual ~ActionInitialization();

    virtual void Build() const;
};

}

ActionInitialization.hh

#include "ActionInitialization.hh"
#include "PrimaryGeneratorAction.hh"
#include "EventAction.hh"

namespace ED
{

ActionInitialization::ActionInitialization()
{}

void ActionInitialization::Build() const
{
  SetUserAction(new PrimaryGeneratorAction);
  SetUserAction(new EventAction);
}

}

ActionInitialization.cc

Sequential
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Action Initialization - .hh - MT-ready

#include "G4VUserActionInitialization.hh"

namespace ED
{

class ActionInitialization : public G4VUserActionInitialization
{
  public:
    ActionInitialization();
    virtual ~ActionInitialization();

    virtual void Build() const;
    virtual void BuildForMaster() const;
};

}

ActionInitialization.hh

Function called 
only in MT mode
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Action Initialization - .cc - MT-ready

#include "ActionInitialization.hh"
#include "PrimaryGeneratorAction.hh"
#include "EventAction.hh"

namespace ED
{

// ...

void ActionInitialization::Build() const
{
  SetUserAction(new PrimaryGeneratorAction);
  SetUserAction(new EventAction);
  SetUserAction(new RunAction);
}

void ActionInitialization::BuildForMaster() const
{
  SetUserAction(new RunAction);
}

}

ActionInitialization.cc

Function called 
only in MT mode
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Geometry

● To describe your detector you have to derive your own concrete class from 
G4VUserDetectorConstruction abstract base class.

● Implement the virtual method Construct(), where you
● Instantiate all necessary materials

● Instantiate volumes of your detector geometry

● Optionally, create regions, visualization attributes

● All these geometry objects (materials, volumes, ...) are created in shared 
memory (on master)

● Optionally, implement the virtual method ConstructSDandField(), where you
● Instantiate your sensitive detector classes and set them to the corresponding 

logical volumes

● Instantiate magnetic (or other) field

● Using  ConstructSDanField() is mandatory with multi-threading
● Sensitive detectors and field are created on workers 
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Physics
● Physics list is instantiated in main()

● Its is created in shared memory (on master)

● Physics lists provided in Geant4 are MT-ready 
● Nothing to be done on the user side in this case

● Particles are constructed via call to ConstructParticle()  in shared 
memory (on master)

● Physics processes are constructed via call to ConstructProcess()  on 
workers

● If you define your own physics list
● Make sure that all process objects are instantiated in the 

ConstructProcess() method and NOT in the physics list constructor 

● If it includes ions, add G4GenericIon::GenericIonDefinition() into 
ConstructParticle() method.  This ensures that all ions (including light 
ions such as deuteron, alpha) work properly.
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Scoring

● Geant4 sensitive, hits collections are MT ready
● Hits objects, as well as sensitive detectors, are instantiated on workers, 

that's why the G4Allocator declared with hit class need to be defined 
thread-local - add G4ThreadLocal keyword

MyHit.hh sequential

G4Allocator<MyHit>*  MyHitAllocator = 0;

extern G4Allocator<MyHit>*  MyHitAllocator;

G4ThreadLocal G4Allocator<MyHit>* MyHitAllocator = 0;

extern G4ThreadLocal G4Allocator<MyHit>*  MyHitAllocator;

MyHit.cc sequential

 MyHit.hh MT-ready

MyHit.cc MT-ready
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Analysis

● Geant4 analysis tools  are MT-ready
● Histograms & profiles:

● Each thread owns its own copy of given histograms & profiles

● At the end of the run workers objects  are “merged” into a single one on 
master

● A single file with merged histograms and profiles will be produced

● When using G4AnalysisManager with histograms, the UserRunAction class 
must be instantiated both on master and workers

MergeMerge

Thread 1

Thread 2

Output
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Analysis (2)

● Ntuples
● Each thread owns a copy of ntuple

● Not merged by default

● Output files
● Each thread will write out a separate file, file names are generated 

automatically:

– fileName[_ntupleName]_tid.ext
● where tid = thread Identifier (0,1,2, ...),  ext = root, xml, csv, hbook

● When using Root output merging can be activated using
● analysisManager->SetNtupleMerging(true); 
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Visualization

● Geant4 visualization is MT-ready
● Visualization is done by master thread based on event keeping
● Events are drawn directly from worker threads as soon as any 

are ready
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User Interface

● User interacts with application typing UI commands
● Master thread “accumulates” the commands and passes the commands 

stack to all the threads at the beginning of a run

● Threads execute the same commands sequence as master thread

● However some commands make sense only in master thread 
(e.g. the one modifying the geometry)

● UI commands can be marked as “not to be broadcasted” via 
G4UIcommand::SetToBeBroadcasted(false);

● Do not forget this step if you implement user-defined UI 
commands
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Conclusions

● Geant4 collaboration made a big effort to make writing Geant4  
multi-threading application easy

● We believe that just following the instructions is enough – for simple 
applications 

● Parallelism is however a tricky business:
● We will speak about race conditions in the second part of this 

presentation
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