
Multithreading - 1

I. Hrivnacova, IJCLab Orsay

Credits: A. Dotti, M. Asai (SLAC), M. Verderi (LLR)

Geant4 IN2P3 and ED PHENIICS Tutorial,
16 – 20 May 2022, IJCLab

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 2

Outline

● Introduction
● What is a thread
● Why multithreading
● Multithreading in Geant4
● Multithreading Geant4 application

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 3

Introduction

● Modern CPU architectures:
● Increasing number of processors & memory, but memory cost scales

slower => Less memory/core

● Memory and its access will limit number of concurrent
processes running on single chip

● Solution: add parallelism in the application code

● Geant4 needs back-compatibility with user code and simple

approach (physicists != computer scientists)

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 4

What Is a Thread

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 5

What Is a Thread ?

● Sequential application - one core

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 6

What Is a Thread ? (2)

● Sequential application – start N (cores/CPUs) copies of an
application if it fits in memory

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 7

What Is a Thread ? (3)

● MT application – a single application starts threads.

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 8

What Is a Thread ? (4)

● Memory reduction: when shared objects are introduced, memory of N
threads is less than memory used by N copies of the application

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 9

Why Multithreading

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 10

Detector geometry &
cross-section tables

MEMORY BOARD

Transient per event
(tracks, hits, etc.)

Active cores Unused cores

AVAILABLE CORES

MEMORY BOARD

Active cores

AVAILABLE CORES

 W

it
h

o
u

t
M

T

 W

it
h

 M
T

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 11

Multithreading in Geant4

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 12

Multi-threading in Geant4

● Each worker thread proceeds
independently

● Initializes its state from a master
thread

● Identifies its part of the work
(events)

● Generates hits in its own hits-
collection

● Geant4 automatically performs
reductions (accumulation) when
using scorers, G4Run derived
classes or g4tools

● General design choice: event level parallelism via multi-threading
(POSIX based, in 10.5 migration from POSIX threading to C++11
threading)

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 13

Simplified Master / Worker Model

● A Geant4 application (in MT mode) can be seen as simple finite
state machine

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 14

Simplified Master / Worker Model (2)

● A Geant4 application (in MT mode) can be seen as simple finite
state machine

● Threads do not exists before first /run/beamOn
● When master starts the first run spawns threads and distribute

work!

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 15

Shared Memory

● To reduce memory footprint threads must share at least part of
the objects

● General rule in Geant4: threads can share whatever is invariant
during the event loop (e.g. threads do not change these objects
while processing events, these are used “read-only”)

● Geometry definition

● Electromagnetic physics tables

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 16

Shared ? Private?

● Shared by all threads: stable
during the event loop

● Geometry
● Particle definition
● Cross-section tables
● User-initialization classes

● Thread-local: dynamically
changing for every
event/track/step

● All transient objects such as
run, event, track, step,
trajectory, hit, etc.

● Physics processes
● Sensitive detectors
● User-action classes

● In the multi-threaded mode
● data that is stable during the event loop is shared among threads, while

● data that is transient during the event loop is thread-local.

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 17

Geant4 MT
● Event level parallelism via multithreading (POSIX based)
● Built on top of experience of G4MT prototypes

● Capitalizing the work started back in 2009 by X.Dong and G.Cooperman,
Northeastern University

● Main design driving goal: minimize user-code changes
● Integrated into Version 10.0 codebase

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 18

Geant4 10.00

● This is the first release (December 2013) with multithreading
capability with event parallelism

● Two build options: Multithreaded and Sequential mode, selection via a
cmake configuration option -DGEANT4_BUILD_MULTITHREADED=ON

● Maximum back-compatibility with user code - however some
API had to changed to enable MT (this is why this is a major
release)

● An application developed for Geant4 version 9.6 can be used without
changing the code in sequential mode (except for other mandatory
modifications not MT-related)

● An MT-ready application, can also run in sequential mode without
changing the code (but not vice-versa)

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 19

Multithreading Geant4
Application

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 20

Geant4 MT and User Application

● Geant4 provides building
blocks (bricks)

● Users have to assemble
them to describe their
scenario in their application
program

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 21

Towards MT Application

● Geant4 kernel takes care of steering event processing on
workers

● Use new G4RunManagerFactory class to create a G4RunManager
derived class for steering MT run

● New Geant4 virtual methods/classes to be implemented in a
user code

● G4VUserActionInitialization – mandatory

● G4VUserDetectorConstruction::ConstructSDandField() - for applications
with field and/or sensitive detectors

● G4UserWorkerThreadInitialization – optional, for applications which
want/need to customize some aspects of thread behavior

● Make your application thread-safe

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 22

Geant4 Kernel & User Application
In Sequential Mode

main()Create G4RunManager

Initialize

RunBeamOn

MyEventAction

MyStackingAction

MyTrackingAction

MyDetectorConstruction

MyPhysicsList

MySteppingAction

Delete G4RunManager

MyPrimaryGenerator

MyActionInitialization

Run :: BeamOn
Event 1

Initialization
 (detector setup and
 physics processes)

Primaries => Stack

Track 1

Step 1 Step N ...

Track 2 … Track N

Event 2 … Event N

Run :: Initialize

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 23

User Application and Geant4 Kernel
In Sequential Mode

User Application Geant4 kernel User Application

Geant4 kernel User Application Geant4 kernel User Application

Geant4 kernel User Application

● Sequential application – start N (cores/CPUs) copies of an application if it fits in
memory

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 24

Master (shared)

Thread 0

.

.

.

Geant4
Kernel

User Application and Geant4 Kernel
In MT Mode

User
Application

User
Application

Geant4
Kernel

Geant4
Kernel

.

.

.

Thread 1

.

.

.

User
ApplicationGeant4

Kernel

Thread N

.

.

.

User
ApplicationGeant4

Kernel

Main

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 25

MyDetectorConstruction

main()Create G4MTRunManager

Initialize

RunBeamOn

MyEventAction

MyStackingAction

MyTrackingAction

MyDetectorConstruction

MySteppingAction

Delete G4MTRunManager

Master (shared)

MyPrimaryGenerator
MyPhysicsList
MyPhysicsList
MyActionInitialization

Thread 0

Event N1

Event NN

...

MyRunAction

MyEventAction

MyStackingAction

MyTrackingAction

MySteppingAction

Thread 1

Event M1

Event MN

...

MyRunAction

MyRunAction

Geant4 Kernel
Create/Set

BuildOnMaster

Build

User Application and Geant4 Kernel
In MT Mode

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 26

main()

● Geant4 does not provide the main().
● In your main(), you have to

● Construct G4RunManager derived class using G4RunManagerFactory

● Define your initialization classes: MyDetectorConstruction and
MyPhysicsList and set them to G4RunManager

● Define your primary generator class (MyPrimaryGenerator) using your
MyActionInitialization class and set it to G4RunManager

● You can also
● Define optional user action classes and set them to G4RunManager

using your ActionInitialization class

● Define Geant4 visualization and (G)UI session via G4VisExecutive and
G4UIExecutive and/or your persistency manager

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 27

main() - sequential
#include "DetectorConstruction.hh"
#include "ActionInitialization.hh"

#include "G4RunManager.hh"
#include "FTFP_BERT.hh"

int main(int argc,char** argv)
{
 // Create User Interface and enter in interactive session (1)

 // Construct the default run manager
 G4RunManager* runManager = new G4RunManager;

 // Detector construction
 runManager->SetUserInitialization(new ED::DetectorConstruction());

 // Physics list
 G4VModularPhysicsList* physicsList = new FTFP_BERT;
 runManager->SetUserInitialization(physicsList);

 // User action initialization
 runManager->SetUserInitialization(new ED::ActionInitialization());

 // Create User Interface and enter in interactive session
 ...
}

exampleED.cc

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 28

main() - MT
#include "DetectorConstruction.hh"
#include "ActionInitialization.hh"

#include "G4RunManagerFactory.hh"
#include "FTFP_BERT.hh"

int main(int argc,char** argv)
{
 // Create User Interface and enter in interactive session (1)
 ...
 // Construct the default run manager
 auto* runManager =
 G4RunManagerFactory::CreateRunManager(G4RunManagerType::Default);

 // Detector construction
 runManager->SetUserInitialization(new ED::DetectorConstruction());

 // Physics list
 G4VModularPhysicsList* physicsList = new FTFP_BERT;
 runManager->SetUserInitialization(physicsList);

 // User action initialization
 runManager->SetUserInitialization(new ED::ActionInitialization());

 // Create User Interface and enter in interactive session
 ...
}

exampleED.cc

The default run
manager type
supports MT

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 29

User Action Initialization

● The initialization and action classes which are called during
event processing MUST be defined all together in the user
action initialization class derived from
G4VUserActionInitialization abstract base class.

● Note that use of this class is mandatory for multithreading processing

● Implement the virtual method Build(), where you
● Instantiate all initialization and action classes called during event

processing
● This method is called in MT mode on the workers

● Optionally, implement the virtual method BuildForMaster(),
where you

● Instantiate all initialization and action classes called during event
processing which should be build on master

● Typically, RunAction is created both on master and workers

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 30

#include "G4VUserActionInitialization.hh"

namespace ED
{

class ActionInitialization : public G4VUserActionInitialization
{
 public:
 ActionInitialization();
 virtual ~ActionInitialization();

 virtual void Build() const;
};

}

ActionInitialization.hh

#include "ActionInitialization.hh"
#include "PrimaryGeneratorAction.hh"
#include "EventAction.hh"

namespace ED
{

ActionInitialization::ActionInitialization()
{}

void ActionInitialization::Build() const
{
 SetUserAction(new PrimaryGeneratorAction);
 SetUserAction(new EventAction);
}

}

ActionInitialization.cc

Sequential

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 31

Action Initialization - .hh - MT-ready

#include "G4VUserActionInitialization.hh"

namespace ED
{

class ActionInitialization : public G4VUserActionInitialization
{
 public:
 ActionInitialization();
 virtual ~ActionInitialization();

 virtual void Build() const;
 virtual void BuildForMaster() const;
};

}

ActionInitialization.hh

Function called
only in MT mode

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 32

Action Initialization - .cc - MT-ready

#include "ActionInitialization.hh"
#include "PrimaryGeneratorAction.hh"
#include "EventAction.hh"

namespace ED
{

// ...

void ActionInitialization::Build() const
{
 SetUserAction(new PrimaryGeneratorAction);
 SetUserAction(new EventAction);
 SetUserAction(new RunAction);
}

void ActionInitialization::BuildForMaster() const
{
 SetUserAction(new RunAction);
}

}

ActionInitialization.cc

Function called
only in MT mode

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 33

Geometry

● To describe your detector you have to derive your own concrete class from
G4VUserDetectorConstruction abstract base class.

● Implement the virtual method Construct(), where you
● Instantiate all necessary materials

● Instantiate volumes of your detector geometry

● Optionally, create regions, visualization attributes

● All these geometry objects (materials, volumes, ...) are created in shared
memory (on master)

● Optionally, implement the virtual method ConstructSDandField(), where you
● Instantiate your sensitive detector classes and set them to the corresponding

logical volumes

● Instantiate magnetic (or other) field

● Using ConstructSDanField() is mandatory with multi-threading
● Sensitive detectors and field are created on workers

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 34

Physics
● Physics list is instantiated in main()

● Its is created in shared memory (on master)

● Physics lists provided in Geant4 are MT-ready
● Nothing to be done on the user side in this case

● Particles are constructed via call to ConstructParticle() in shared
memory (on master)

● Physics processes are constructed via call to ConstructProcess() on
workers

● If you define your own physics list
● Make sure that all process objects are instantiated in the

ConstructProcess() method and NOT in the physics list constructor

● If it includes ions, add G4GenericIon::GenericIonDefinition() into
ConstructParticle() method. This ensures that all ions (including light
ions such as deuteron, alpha) work properly.

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 35

Scoring

● Geant4 sensitive, hits collections are MT ready
● Hits objects, as well as sensitive detectors, are instantiated on workers,

that's why the G4Allocator declared with hit class need to be defined
thread-local - add G4ThreadLocal keyword

MyHit.hh sequential

G4Allocator<MyHit>* MyHitAllocator = 0;

extern G4Allocator<MyHit>* MyHitAllocator;

G4ThreadLocal G4Allocator<MyHit>* MyHitAllocator = 0;

extern G4ThreadLocal G4Allocator<MyHit>* MyHitAllocator;

MyHit.cc sequential

 MyHit.hh MT-ready

MyHit.cc MT-ready

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 36

Analysis

● Geant4 analysis tools are MT-ready
● Histograms & profiles:

● Each thread owns its own copy of given histograms & profiles

● At the end of the run workers objects are “merged” into a single one on
master

● A single file with merged histograms and profiles will be produced

● When using G4AnalysisManager with histograms, the UserRunAction class
must be instantiated both on master and workers

MergeMerge

Thread 1

Thread 2

Output

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 37

Analysis (2)

● Ntuples
● Each thread owns a copy of ntuple

● Not merged by default

● Output files
● Each thread will write out a separate file, file names are generated

automatically:

– fileName[_ntupleName]_tid.ext
● where tid = thread Identifier (0,1,2, ...), ext = root, xml, csv, hbook

● When using Root output merging can be activated using
● analysisManager->SetNtupleMerging(true);

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 38

Visualization

● Geant4 visualization is MT-ready
● Visualization is done by master thread based on event keeping
● Events are drawn directly from worker threads as soon as any

are ready

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 39

User Interface

● User interacts with application typing UI commands
● Master thread “accumulates” the commands and passes the commands

stack to all the threads at the beginning of a run

● Threads execute the same commands sequence as master thread

● However some commands make sense only in master thread
(e.g. the one modifying the geometry)

● UI commands can be marked as “not to be broadcasted” via
G4UIcommand::SetToBeBroadcasted(false);

● Do not forget this step if you implement user-defined UI
commands

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 40

Conclusions

● Geant4 collaboration made a big effort to make writing Geant4
multi-threading application easy

● We believe that just following the instructions is enough – for simple
applications

● Parallelism is however a tricky business:
● We will speak about race conditions in the second part of this

presentation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

