
Multithreading - 2

I. Semeniouk
LLR, CNRS – Ecole Polytechnique

Credits:
I. Hrivnacova(IJCLab), A. Dotti, M. Asai (SLAC)

Geant4 Tutorial,
23 - 27 November 2020, Orsay

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 2

Outline

● What is thread-safety
● Geant4 MT utilities

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 3

Thread Safety

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 4

Thread Safety (1)

● Consider a function that reads and writes a shared resource (a
global variable in this example).

double sharedVariable;

int doSomeFunction() {
 int result = 0;
 if (sharedVariable > 0) {

result = sharedVariable;
sharedVariable = -1;

 }
 else {

doSomethingElse();
sharedVariable = 1;

 }
 return result;
}

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 5

Thread Safety (2)

● Now consider two threads that execute the function at the same
time. Concurrent access to the shared resource

int doSomeFunction() {
 int result = 0;
 if (sharedVariable > 0) {

result = sharedVariable;
sharedVariable = -1;

 }
 else {

doSomethingElse();
sharedVariable = 1;

 }
 return result;
}

int doSomeFunction() {
 int result = 0;
 if (sharedVariable > 0) {

result = sharedVariable;
sharedVariable = -1;

 }
 else {

doSomethingElse();
sharedVariable = 1;

 }
 return result;
}

double sharedVariable;

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 6

Thread Safety (3)

● result is a local variable, exists in each thread separately not
a problem

● T1 starts, arrives here and then is halted to the shared resource

int doSomeFunction() {
 int result = 0;
 if (sharedVariable > 0) {

result = sharedVariable;
sharedVariable = -1;

 }
 else {

doSomethingElse();
sharedVariable = 1;

 }
 return result;
}

int doSomeFunction() {
 int result = 0;
 if (sharedVariable > 0) {

result = sharedVariable;
sharedVariable = -1;

 }
 else {

doSomethingElse();
sharedVariable = 1;

 }
 return result;
}

double sharedVariable;

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 7

Thread Safety (4)

● Now T2 starts and arrives here, the shared resource value is
not yet updated, what is the expected behavior? What is
happening?

int doSomeFunction() {
 int result = 0;
 if (sharedVariable > 0) {

result = sharedVariable;
sharedVariable = -1;

 }
 else {

doSomethingElse();
sharedVariable = 1;

 }
 return result;
}

int doSomeFunction() {
 int result = 0;
 if (sharedVariable > 0) {

result = sharedVariable;
sharedVariable = -1;

 }
 else {

doSomethingElse();
sharedVariable = 1;

 }
 return result;
}

double sharedVariable;

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 8

Thread Safety (5)

● Use mutex / locks to create a barrier. T2 will not start until T1 reaches
UnLock

● However mutex significantly reduces performances (general rule in Geant4:
not allowed in methods called during the event loop)

int doSomeFunction() {
 int result = 0;
 Lock(&mutex);
 if (sharedVariable > 0) {

result = sharedVariable;
sharedVariable = -1;

 }
 else {

doSomethingElse();
sharedVariable = 1;

 }
 UnLock(&mutex);
 return result;
}

int doSomeFunction() {
 int result = 0;
 Lock(&mutex);
 if (sharedVariable > 0) {

result = sharedVariable;
sharedVariable = -1;

 }
 else {

doSomethingElse();
sharedVariable = 1;

 }
 UnLock(&mutex);
 return result;
}

double sharedVariable;

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 9

Thread Safety (6)

● Do we really need to share sharedVariable?
● If not, declare it “thread local”, each thread then has its own copy
● Simple way to “transform” your code, but very small CPU penalty, no

memory usage reduction
● General rule in Geant4: do not use unless really necessary!

double G4ThreadLocal
sharedVariable;

int doSomeFunction() {
 int result = 0;
 if (sharedVariable > 0) {

result = sharedVariable;
sharedVariable = -1;

 }
 else {

doSomethingElse();
sharedVariable = 1;

 }
 return result;
}

double G4ThreadLocal
sharedVariable;

int doSomeFunction() {
 int result = 0;
 if (sharedVariable > 0) {

result = sharedVariable;
sharedVariable = -1;

 }
 else {

doSomethingElse();
sharedVariable = 1;

 }
 return result;
}

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 10

Geant4 MT Utilities

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 11

Geant4 MT Types

● To hide platform dependent and POSIX definitions, there are
introduced Geant4 type definitions (typedef) for MT related
types & definitions

● Instead of using __thread keyword, use G4ThreadLocal, eg.

static G4ThreadLocal G4double value;

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 12

Setting the Number of Threads

● Default: the number of threads = 2
● Use /run/numberOfThreads or

G4MTRunManager::SetNumberOfThreads() to change this
default value

● If you want to exploit fully your machine you can set the number of all
logical cores of your machine using
G4Threading::G4GetNumberOfCores()

● You can overwrite the setting in your application via setting the
environment variable G4FORCENUMBEROFTHREADS

● Must be done before starting the application

● The special keyword MAX can be used to use all system cores

● The number of threads cannot be changed after run has been
initialized

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 13

Tuning the Output

● When running an application in MT mode the output from
workers is interlaced with the output from master and is
preceded with the prefix string G4WTn >

● Where n is thread Id (0, 1,2, ...)

G4WT1 > ### Run 0 start.
G4WT0 > ### Run 0 start.
G4WT1 > ... open Root analysis file : ED_t1.root - done
G4WT0 > ... open Root analysis file : ED_t0.root - done
G4WT0 > >>> Start event: 1
G4WT1 > >>> Start event: 0
G4WT1 >
-------->Chamber1HitsCollection: in this event:
G4WT1 > Chamber hit in layer: 0 time [s]: 1.37346e-08 position
[mm]: (80.6632,45.2255,-6000.1)
G4WT1 > Chamber hit in layer: 1 time [s]: 1.60253e-08 position
[mm]: (95.0864,52.1524,-5500.1)
G4WT1 > Chamber hit in layer: 2 time [s]: 1.83168e-08 position
[mm]: (109.993,60.1137,-5000.1)
....

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 14

Tuning the Output (2)

● This default behavior can be changed using the commands
● /control/cout/setCoutFile [filename]

● Send G4cout stream to a per-thread file.
● Use “***Screen***” to reset to screen
● Analogous command is available for G4cerr

● /control/cout/useBuffer [true|false]
● Send G4cout/G4cerr to a per-thread buffer that will be printed at the end

of the job

● /control/cout/prefixString [string]
● Add an per-thread identifier to each output line from threads, the thread

id is appended to this prefix (default: G4WTn)

● /control/cout/ignoreThreadsExcept [id]
● Show output only from thread “id”

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 15

Lock Mechanism

● To add a lock mechanism (remember: will spoil performances
but may be needed with non thread-safe code):

#include “G4AutoLock.hh”

namespace {
 G4Mutex myMutex = G4MUTEX_INITIALIZER;
}

void myFunction() {
 // enter critical section
 G4AutoLock lock(&myMutex);
 //will automatically unlock when
 //out of scope
 return;
}

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 16

Other MT Utilities

● Few classes/utilities have been created to help handling of
objects.

● G4Cache : Allows to create a thread-local variable in shared class

● G4ThreadLocalSingleton : for thread-private “singleton” pattern

● G4AutoDelete : automatically delete thread objects at the end of the job

● See more details in Chapter 2.14 of Users’s Guide For Toolkit
Developers

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 17

Conclusions

● Parallelism is a tricky business:
● User code has to be thread-safe

● Race conditions may appear (better: they will very probably appear)

● Locking mechanism and other utilities are provided with Geant4
to make migration to multithreading easier

● Experience is needed for complex applications
● Bugs may often seem “random” and difficult to reproduce

● A new hyper news user forum has been created (category
Multithreading) to address all possible questions

● Ask an expert!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

