Les deux infinis

Multithreading - 2

|. Semeniouk
LLR, CNRS - Ecole Polytechnique

Credits:
|. Hrivhacova(lJCLab), A. Dotti, M. Asai (SLAC)

Geant4 Tutorial,
23 - 27 November 2020, Orsay

Outline

* What is thread-safety
 Geant4d MT utilities

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay

Thread Safety

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay

Thread Safety (1)

* Consider a function that reads and writes a shared resource (a
global variable in this example).

double sharedVariable;

int doSomeFunction() {
int result = 0;
if (sharedVariable > 0) {
result = sharedVariable;
sharedVariable = -1;

else {
doSomethingElse();
sharedVariable = 1;

}

return result;

}

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay

Thread Safety (2)

Now consider two threads that execute the function at the same

time. Concurrent access to the shared resource

double sharedVariable;

int doSomeFunction() {

int result = 0;

if (sharedVariable > 0) {
result = sharedVariable;

, sharedVariable = -1;

else {
doSomethingElse();
sharedVariable = 1;

}

return result;

}

int doSomeFunction() {

int result = 0;

1f (sharedVariable > 0) {
result = sharedVariable;

; sharedVariable = -1;

else {
doSomethingElse()
sharedVariable =

}

return result;

}

1;

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay

Thread Safety (3)

 result is alocal variable, exists in each thread separately not
a problem

e T1 starts, arrives here and then is halted to the shared resource

double sharedVariable;
int doSomeFunction() { int doSomeFunction() {
int result = 0; int result = 0;
if (sharedVariable > 0) { 1f (sharedVariable > 0) {
result = sharedVariable; result = sharedVariable;
sharedVariable = -1; sharedVariable = -1;
else { else {
doSomethingElse(); doSomethingElse();
sharedVariable = 1; sharedVariable = 1;
} }
return result; return result;
} }

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 6

Thread Safety (4)

* Now T2 starts and arrives here, the shared resource value is

not yet updated, what is the expected behavior? What is

happening?

double sharedVariable;

int doSomeFunction() {
int result = 0;
if (sharedVariable > 0) {
result = sharedVariable;
sharedVariable = -1;

else {
doSomethingElse();
sharedVariable = 1;

}

return result;

}

int doSomeFunction() {
int result = 0;
1f (sharedVariable > 0) {
result = sharedVariable;
sharedVariable = -1;

else {
doSomethingElse();
sharedVariable = 1;

}

return result;

}

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay

Thread Safety (5)

Use mutex / locks to create a barrier. T2 will not start until T1 reaches
UnLock

However mutex significantly reduces performances (general rule in Geant4:
not allowed in methods called during the event loop)

double sharedVariable;
int doSomeFunction() { int doSomeFunction() {
int result = 0; int result = 0;
Lock (&mutex) ; Lock (&mutex) ;
if (sharedVariable > 0) { 1f (sharedVariable > 0) {
result = sharedVariable; result = sharedVariable;
sharedVariable = -1; sharedVariable = -1;
else { else {
doSomethingElse(); doSomethingElse();
sharedVariable = 1; sharedVariable = 1;
} }
UnLock (&mutex) ; UnLock (&mutex) ;
return result; return result;
} }

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay

Thread Safety (6)

Do we really need to share sharedVariable?
If not, declare it “thread local”, each thread then has its own copy
Simple way to “transform” your code, but very small CPU penalty, no

memory usage reduction

General rule in Geant4: do not use unless really necessary!

double G4ThreadLocal
sharedVariable;

int doSomeFunction() {

int result = 0;

if (sharedVariable > 0) {
result = sharedVariable;
sharedVariable = -1;

}

else {
doSomethingElse();
sharedVariable = 1;

}

return result;

double G4ThreadLocal
sharedVariable;

int doSomeFunction() {

int result = 0;

1f (sharedVariable > 0) {
result = sharedVariable;
sharedVariable = -1;

}

else {
doSomethingElse();
sharedVariable = 1;

}

return result;

}

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay

Geant4 MT Utllities

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay

10

Geant4d MT Types

* To hide platform dependent and POSIX definitions, there are

Introduced Geant4 type definitions (typedef) for MT related
types & definitions

* |nstead of using _ thread keyword, use G4ThreadLocal, eg.

static G4ThreadLocal G4double value;

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay

11

Setting the Number of Threads

Default: the number of threads = 2

Use /run/numberOfThreads or
G4MTRunManager::SetNumberOfThreads() to change this
default value

* |f you want to exploit fully your machine you can set the number of all
logical cores of your machine using
G4Threading::G4GetNumberOfCores()

You can overwrite the setting in your application via setting the
environment variable G4AFORCENUMBEROFTHREADS

* Must be done before starting the application
* The special keyword MAX can be used to use all system cores

The number of threads cannot be changed after run has been
Initialized

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay

12

Tuning the Output

* When running an application in MT mode the output from
workers is interlaced with the output from master and is
preceded with the prefix string G4WTn >

* Where nisthreadId (0, 1,2, ...)

G4WT1
G4AWTO
G4WT1
G4WTO
GAWTO
G4WT1
G4WT1

G4AWT1
[mm] :
G4AWT1
[mm]:
G4AWT1
[mm]:

> ### Run 0 start.

> ### Run 0 start.

> ... open Root analysis file : ED tl.root - done
> ... open Root analysis file : ED t0.root - done
> >>> Start event: 1

> >>> Start event: 0

>

- ->ChamberlHitsCollection: in this event:

> Chamber hit in layer: 0 time [s]: 1.37346e-08

(80.6632,45.2255,-6000.1)
> Chamber hit in layer: 1 time [s]: 1.60253e-08
(95.0864,52.1524,-5500.1)
> Chamber hit in layer: 2 time [s]: 1.83168e-08
(109.993,60.1137,-5000.1)

position
position

position

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay

13

Tuning the Output (2)

This default behavior can be changed using the commands

/control/cout/setCoutFile [filename]
e Send G4cout stream to a per-thread file.
* Use ™ *Screen*™*” to reset to screen
* Analogous command is available for G4cerr

/control/cout/useBuffer [truelfalse]

 Send G4cout/G4cerr to a per-thread buffer that will be printed at the end
of the job

/control/cout/prefixString [string]

e Add an per-thread identifier to each output line from threads, the thread
id is appended to this prefix (default: G4AWTn)

/control/cout/ignoreThreadsExcept [id]
* Show output only from thread “id”

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 14

Lock Mechanism

* To add a lock mechanism (remember: will spoil performances
but may be needed with non thread-safe code):

#include “G4AutoLock.hh”

namespace {
G4Mutex myMutex = GAMUTEX INITIALIZER;
}

void myFunction() {
// enter critical section
G4AutoLock lock(&myMutex);
//will automatically unlock when
//out of scope
return;

}

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay

Other MT Utllities

* Few classes/utilities have been created to help handling of
objects.

 G4Cache : Allows to create a thread-local variable in shared class
 G4ThreadlLocalSingleton : for thread-private “singleton” pattern
 G4AutoDelete : automatically delete thread objects at the end of the job

 See more details in Chapter 2.14 of Users’s Guide For Toolkit
Developers

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay

16

Conclusions

Parallelism is a tricky business:
 User code has to be thread-safe

 Race conditions may appear (better: they will very probably appear)

Locking mechanism and other utilities are provided with Geant4
to make migration to multithreading easier

Experience is needed for complex applications
* Bugs may often seem “random” and difficult to reproduce

* A new hyper news user forum has been created (category
Multithreading) to address all possible questions

Ask an expert!

23 - 27 Nov 2020 - Geant4 Tutorial - Multithreading 2 - Orsay 17

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

