
More on Multithreading

I. Semeniouk
LLR, CNRS – Ecole Polytechnique

Credits:
I. Hrivnacova(IJCLab), A. Dotti, M. Asai (SLAC)

Geant4 Tutorial,
23 - 27 November 2020, Orsay

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 2

Outline

● Event data reduction
● Migration of a sequential Geant4 application to MT
● Results with Geant4 10.2 MT

● Geant4 on MIC architecture

● Scalability, memory reduction , reproducibility

● GPU and external frameworks

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 3

Event Data Reduction

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 4

Multi-threading in Geant4

● Each worker thread proceeds
independently

● Initializes its state from a master
thread

● Identifies its part of the work
(events)

● Generates hits in its own hits-
collection

● Geant4 automatically performs
reductions (accumulation) when
using scorers, G4Run derived
classes or g4tools

● General design choice: event level parallelism via multi-threading
(POSIX based, in 10.5 migration from POSIX threading to C++11
threading, since 10.7 Geant4 use PTL tasking library)

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 5

Run Action

● In some users applications, UserRunAction is used to accumulate
data from events and to calculate the result values for the whole run

● E.g. in basic example B1, an energy deposited in a selected
volume is accumulated event by event and a total dose is
computed in the EndOfRunAction() method

● In multi-threading mode, the events are accumulated in
UserRunAction objects instantiated on workers and the quantities
accumulated on workers need to be merged in the UserRunAction on
master

● This merging of the data accumulated on workers should be
performed with use of G4Run or G4Accummulable<T> class

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 6

Run Action - Sequential

● An example of a run action used to accumulate data from events:
MyRunAction class

● The run action class is the only action which is instantiated besides
workers also on master

class RunAction : public G4UserRunAction
{
public:
 RunAction();
 virtual ~RunAction();

 virtual void BeginOfRunAction(const G4Run*);
 virtual void EndOfRunAction(const G4Run*);

 void AddEdep (G4double e)
 { fEdep += e; fEdep2 += e*e;};

private:
 G4double fEdep;
 G4double fEdep2;
}

Data accumulated
during event processing

sequential

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 7

Run Action + G4Run

● Separate data representing accounted data (if present) from your RunAction
class in a new Run class (derived from G4Run)

class RunAction : public G4UserRunAction
{
public:
 RunAction();
 virtual ~RunAction();

 virtual G4Run* GenerateRun();
 virtual void BeginOfRunAction(const G4Run*);
 virtual void EndOfRunAction(const G4Run*);

 void AddEdep (G4double e);

private:
 Run* fRun;
}

MT (10.0)

class Run : public G4Run
{
public:
 Run();
 virtual ~Run();

 void AddEdep (G4double e)
 { fEdep += e; fEdep2 += e*e;};

 virtual void Merge(const G4Run*);

private:
 G4double fEdep;
 G4double fEdep2;
}

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 8

Run Action + G4Run (2)

● Implementation of new or changed functions:

G4Run* RunAction::GenerateRun()
{
 fRun = new Run();
 return fRun;
}

void RunAction::AddEdep (G4double edep)
{
 fRun->AddEdep(edep);
}

void Run::Merge(const G4Run* localRun)
{
 fEdep += localRun->fEdep;
 fEdep2 += localRun->fEdep2;
}

This function is called by the master
run instance for each
worker localRun instance

Data in master
Run object

Data in worker
Run object

See basic/B3b, B4b examples

MT (10.0)

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 9

Accumulables

● Classes for users “accumulables” management were added in
10.2 release

● Accumulables are named variables registered to the accumulable
manager, which provides the access to them by name and performs
their merging in multi-threading mode

● To better reflect the meaning of these objects, the classes base name
"Parameter" used in 10.2 was changed in "Accumulable" in 10.3

● G4Accumulabe<T> - ready for use, for simple numeric types (double, int)
● Users can also define their own accumulables derived from the

G4VAccumulable base class
● Tested with std::map<G4String, G4int> used for processes counting in TestEm*

examples

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 10

Accumulables (2)

● The accumulables are registered to G4AccumulableManager
● Performs their merging in multi-threading mode according to their

MergeMode

● Provides the access to them by name

● Demonstrated in the basic examples B1 and B3a

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 11

Run Action + G4Accumulable
class RunAction : public G4UserRunAction
{
public:
 ...

 void AddEdep (G4double e)
 { fEdep += e; fEdep2 += e*e;};

private:
 G4double fEdep;
 G4double fEdep2;
}

Data accumulated
during event processing

sequential

#include “G4Accumulable.hh”
...
class RunAction : public G4UserRunAction
{
 public:
 ...
 void AddEdep (G4double edep)
 { fEdep += e; fEdep2 += e*e;};
 // ...
 private:
 G4Accumulable<G4double> fEdep;
 G4Accumulable<G4double> fEdep2;
};

MT (10.3)

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 12

Run Action + G4Accumulable (2)
#include “G4AccumulableManager.hh”
...
RunAction::RunAction()
: G4UserRunAction(),
 fEdep(0.),
 fEdep2(0.)
{
 //Register parameter to the parameter manager
 G4AccumulableManager* accManager = G4AccumulableManager::Instance();
 accManager->RegisterAccumulable(fEdep);
 accManager->RegisterAccumulable(fEdep2);
}

void RunAction::EndOfRunAction(const G4Run* run) {
 ...
 // Merge parameters
 G4AccumulableManager* accManager = G4AccumulableManager::Instance();
 accManager->Merge();
 ...
}

The accumulable are initialized
with a name (optional) and a value

The accumulables not created
via the manager have to be
registered to it

The call to Merge() may be not
necessary in future

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 13

Migrating Sequential
Geant4 Application to MT

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 14

Migration to MT

Migration of a sequential application to MT is a 5-steps process:

1. Move user actions instantiation to new G4UserActionInitialization
class

2. Use G4RunManagerFactory in your main() function (10.7.1)
Use G4MTRunManager in your main() function (old)

3. Split DetectorConstruction::Construct() in two: SD and Field go in new
method ConstructSDandField()

4. Use G4Run to accumulate run data, implement
G4RunAction::Merge() method, or alternatively G4Accummulables

5. If you use anywhere G4Allocator (typically for hits), transform them to
be G4ThreadLocal

More details can be found Geant4 documentation and a short “howto” in the
TWiki migration page:

https://twiki.cern.ch/twiki/bin/view/Geant4/QuickMigrationGuideForGeant4V10

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 15

Moving from threads to tasks

• Introduced Geant4 10.7

– Adds a new ‘task-oriented’ capability to adapt to frameworks of LHC
experiments which are task oriented

– Includes a native C++ implementation of the ‘task model’

– Includes an (Intel) Thread Building Block ‘TBB task mode’ – the Geant4
installation must

find & use TBB, (by configuring cmake with -DGEANT4_USE_TBB=ON)

• There is now a variety of RunManagers

– Sequential (G4RunManager)

– ‘Old-style’ Multi-threading (G4MTRunManager)

– G4TaskRunManager in ‘native’ mode

– G4TaskRunManager in TBB mode

• new class G4RunManagerFactory can be used to create any of these.

• Final version of tasking will be provided in 10.7 release, the default
RunManager since 11.0

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 16

Moving from threads to tasks
G4RunManagerFactory

● The class G4RunManagerFactory can be used to create RunManager of any type
● The default RunManager

 G4MTRunManager (before 10.0)

 G4TaskManager (since 11.0)

● The ways to select RunManager Type

// [Option #1] enum class G4RunManagerType: // Default, Serial, MT, Tasking, TBB

auto* runMgr =
G4RunManagerFactory::CreateRunManager(G4RunManagerType::Default, 4);

// [Option #2] string: “default”, “serial”, “mt”, “task”, “tbb”

auto* runMgr = G4RunManagerFactory::CreateRunManager("default", 4);

// [Option #3] Environment VARIABLES

 export G4FORCE_RUN_MANAGER_TYPE=Serial | MT | Task | TBB

export G4FORCENUMBEROFTHREADS=4

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 17

Results With Geant4 10.x MT

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 18

Reproducibility

● Geant4 Version >= 10.0 guarantees strong reproducibility
● Given a setup and the random number engine status it is

possible to reproduce any given event independently of the
number of threads or the order in which events are processed

● Note: (optional) radioactive decay module breaks this in MT,
Geant4 MT experts are currently working on a fix

● This does not mean the results are wrong!

● Simulation results are equivalent between Sequential and MT

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 19

MIC Architecture

● Geant4 has been
ported to compile
and run on Intel
Xeon Phi (aka
MIC)

● It requires Intel
compiler (not
free) and RTE

● 61 cores (x4
ways hyper-
threading), w/
max 16GB of
RAM

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 21

Memory Reduction

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 22

Scalability

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 23

CPU Performance

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 24

Throughput in Sequential Mode

GeV

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 25

 GPU and External Frameworks

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 26

Heterogeneous Parallelism

● MPI
● MPI works together with MT
● The examples of MPI parallelism with Geant4 MT are provided in

Geant4 examples/extended/parallel/MPI
● New features in this category expected in the future: Geant4 MT experts

are currently evaluating extensions !

● TBB
● Intel Thread Building Block (TBB): task based parallelism framework

– https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html

● Freely available for Linux/Mac/WIN
● Expression of interest by some LHC experiment
● One example is provided in Geant4 examples/extended/parallel/TBB
● Since 10.7 available as special run manager via PTL

 G4Opticks (part of Opticks): interfaces Geant4
user code with Opticks.

It defines a hybrid workflow where generation
and tracing of optical photons is offloaded to
Opticks (GPU/device) at stepping level when a
certain amount photons is reached. Geant4
(CPU/host) handles all other particles.

The Geant4 Cerenkov and Scintillation (C/S)
processes are only used to calculate the number
of optical photons to be generated at a given
step and to provide all necessary quantities to
generate the photons on the GPU.

The information collected is the so called
GenStep which is different for Cerenkov and
Scintillation (C/S).

Photon Hits are collected at the end of the
G4Opticks call and added to the event hits
collection.

Use NVIDIA® hardware (some with RTX:
raytracing hardware acceleration) and
software (CUDA, OptiX).

27

G4Opticks

Hans Wenzel 26TH Geant4 Collaboration Meeting September 16th 2021

An advanced Geant4 example: CaTS
Calorimeter and Tracker Simulation

Performance:

28

Hardware:

CP
U

Intel(R) Core i7-9700K 3.6GHz
32 GB memory.

GP
U

GeForce RTX 2070
CUDA Driver Version /11.3
CUDA Capability: 7.5
VRAM: 7981 Mbytes
Cores: 2304

Timing results (Geant4 10.7.p01):

Geant4 optical physics 2438
sec/event

G4Opticks, RNGmax1 10 6.45
sec/event

G4Opticks RTX enabled, RNGmax1
10

2.72
sec/event

G4Opticks, RNGmax1 100 6.86
sec/event

G4Opticks RTX enabled, RNGmax1
100

2.87
sec/event

1) Memory pre allocated for pre-initialized
(at installation) curandState files to load.

Geant4/(Geant4 + Opticks) comparison:
2438/6.45 = 378 (x 2.4 ~ 900 with RTX) x speed
up

RTX Ray tracing hardware acceleration is
usually not available on HPC platforms

Integration of Opticks
 and Geant4 (CaTS)

From Hans Wenzel presentation
26TH Geant4 Collaboration Meeting

September 16th 2021

23 - 27 Nov 2020 - Geant4 Tutorial - More on Multithreading - Orsay 29

AdePT
Accelerated demonstrator of electromagnetic Particle Transport

● Open Source https://github.com/apt-sim/AdePT
● External physics: G4HepEm and geometry: VecGeom
● Previously validated simulation results on GPU against Geant4

Andri Gheata

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	G4Opticks
	Performance:
	Slide 29

