Primary Particles

Geant4 PHENIICS & IN2P3 Tutorial,
16 — 20 May 2022,
Orsay

Marc Verderi
LLR, Ecole polytechnique

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

Credits...

* Filiation from at least Sébastien Incerti (CENBG), Makoto Asai,
Tatsumi Koi, Dennis Wright (SLAC)

* And certainly other people !

Where will we look

in the toolkit ?

Main category and directory
involved:

* Run i

— geant4/source/run

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

Introduction

Here, “primary particles” stand for the particles
you need to start with in your simulation at the
beginning of each event:

— For example:
* Positrons in a PET scan imaging system in a medical application
* Final state products in a proton-proton collision at the LHC

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

Introduction

Here, “primary particles” stand for the particles
you need to start with in your simulation at the
beginning of each event:

— For example:
* Positrons in a PET scan imaging system in a medical application
* Final state products in a proton-proton collision at the LHC

These particles are then transported in your geometry...
— ... with interactions, creation of secondary particles...
— ... and related detector response.

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

Introduction

Here, “primary particles” stand for the particles
you need to start with in your simulation at the
beginning of each event:

— For example:
* Positrons in a PET scan imaging system in a medical application
* Final state products in a proton-proton collision at the LHC

These particles are then transported in your geometry...
— ... with interactions, creation of secondary particles...
— ... and related detector response.

The primary particles must be particles that Geant4 is able to track:

— le : don’t ask Geant4 for tracking a Higgs boson or a SUSY particle !
* Unless you have extended yourself the physics of Geant4 to do so...

— But provide instead the decay products of these:
* Eg: particles resulting from hadronisation of bb ... or decays of ZZ in case of a Higgs, etc.

You have to produce these primary particles taking some action
— It is explained here how.

A mandatory operation

* Defining this action to produce “primary particles” is one of the three mandatory
operations you have to do to make a working simulation.
— Remember the two other mandatory operations:

* detector construction: inheriting from G4VUserDetectorConstruction
* physics list: inheriting from G4VUserPhysicsList

A mandatory operation

Defining this action to produce “primary particles” is one of the three mandatory
operations you have to do to make a working simulation.
— Remember the two other mandatory operations:

* detector construction: inheriting from G4VUserDetectorConstruction
* physics list: inheriting from G4VUserPhysicsList

You define this action inheriting from the G4VUserPrimaryGeneratorAction base class:
— Let’s call your concrete class “MyPrimaryGeneratorAction”

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

A mandatory operation

Defining this action to produce “primary particles” is one of the three mandatory
operations you have to do to make a working simulation.

— Remember the two other mandatory operations:
* detector construction: inheriting from G4VUserDetectorConstruction
* physics list: inheriting from G4VUserPhysicsList

You define this action inheriting from the G4VUserPrimaryGeneratorAction base class:
— Let’s call your concrete class “MyPrimaryGeneratorAction”
To take effect, a MyPrimaryGeneratorAction object must be passed to the runManager:

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

A mandatory operation

Defining this action to produce “primary particles” is one of the three mandatory
operations you have to do to make a working simulation.

— Remember the two other mandatory operations:
* detector construction: inheriting from G4VUserDetectorConstruction
* physics list: inheriting from G4VUserPhysicsList

You define this action inheriting from the G4VUserPrimaryGeneratorAction base class:
— Let’s call your concrete class “MyPrimaryGeneratorAction”
To take effect, a MyPrimaryGeneratorAction object must be passed to the runManager:

* Inyour action initialization class:
void MyActionlnitialization::Build() const

{

or
G4MTRunManager* runManager = new G4MTRunManager;

}
* And in your main program:
runManager->SetUserlnitialization(new MyActionlnitialization);

SetUserAction(new MyPrimaryGeneratorAction); {G4RunManager* runManager = new G4RunManager;

— if Geant4 version < Geant4 v10.0 (obsoleting): G4RunManager* runManager = new GARunManager:

* In your main program:
runManager->SetUserAction(new MyPrimaryGeneratorAction); [Kept > v10.0 for backward compatibility]

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

10

A mandatory operation

* Defining this action to produce “primary particles” is one of the three mandatory
operations you have to do to make a working simulation.

— Remember the two other mandatory operations:
* detector construction: inheriting from G4VUserDetectorConstruction
* physics list: inheriting from G4VUserPhysicsList

* You define this action inheriting from the G4VUserPrimaryGeneratorAction base class:
— Let’s call your concrete class “MyPrimaryGeneratorAction”
* To take effect, a MyPrimaryGeneratorAction object must be passed to the runManager:

* Inyour action initialization class:
void MyActionlnitialization::Build() const

{

or

}
* And in your main program:
runManager->SetUserlnitialization(new MyActionlnitialization);

SetUserAction(new MyPrimaryGeneratorAction); {G4RunManager* runManager = new G4RunManager;

G4MTRunManager* runManager = new G4MTRunManager;

— if Geant4 version < Geant4 v10.0 (obsoleting): G4RunManager* runManager = new GARunManager:

* In your main program:
runManager->SetUserAction(new MyPrimaryGeneratorAction); [Kept > v10.0 for backward compatibility]

* During the event loop, this action will be invoked at the beginning of each event.
— This invocation defines the start of the event.

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

11

Primary particle generation, in principle

* For each event, you will define:

G4PrimaryVertex objects

= {position, time}

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

12

Primary particle generation, in principle

* For each event, you will define:

G4PrimaryVertex objects G4PrimaryParticle objects

= {position, time}

= {PDG, mass, momentum,
polarization...}

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

13

Primary particle generation, in principle

* For each event, you will define:

G4PrimaryVertex objects
= {position, time}

G4PrimaryParticle objects

= {PDG, mass, momentum,
polarization...}

= daughterl
- = daughter2

————————

-
-
-

@ possibility for pre-assigned
decay (e.g. B meson decay) :

SetDaughter(daughterl);
SetDaughter(daughter2);

SetDaughter(daughter3);

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

14

Primary particle generation, in practice (1/2)

* Primary particle generation is made by your concrete class, inheriting from base class:
G4VUserPrimaryGeneratorAction

* The (pure virtual) method you must implement is
void GeneratePrimaries(G4Event* event);

* In this method, you pass to “event” the G4PrimaryVertex objects you created,
— to which you have attached the related G4PrimaryParticle objects.

* Thisis the method called at the beginning of each event.

-~

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay 15

First example of a G4VUserPrimaryGeneratorAction,

with today’s sample code

void EDPrimaryGeneratorAction::GeneratePrimaries(G4Event* event)

{

// Define particle properties

GA4String particleName = "proton";
GAThreeVector position(0, 0, -9.*m);
GAThreeVector momentum(0, 0, 1.*GeV);
G4double time = 0;

// Get particle definition from G4ParticleTable
G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();
G4ParticleDefinition* particleDefinition = particleTable->FindParticle(particleName);
if (! particleDefinition) {
G4cerr << "Error: " << particleName << " not found in G4ParticleTable" << G4endl;
exit(1);
}

// Create primary particle

GA4PrimaryParticle* primaryParticle = new G4PrimaryParticle(particleDefinition);

primaryParticle->SetMomentum(momentum.x(), momentum.y(), momentum.z());
primaryParticle->SetMass(particleDefinition->GetPDGMass());
primaryParticle->SetCharge(particleDefinition->GetPDGCharge());

// Create vertex

G4PrimaryVertex® vertex = new G4PrimaryVertex(position, time);

vertex->SetPrimary(primaryParticle);

event->AddPrimaryVertex(vertex);

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

16

Primary particle generation, in practice (2/2)

Primary particle generation is made by your concrete class, inheriting from base class:
G4VUserPrimaryGeneratorAction

The (pure virtual) method you must implement is
void GeneratePrimaries(G4Event* event);

In this method, you pass to “event” the G4PrimaryVertex objects you created,
— to which you have attached the related G4PrimaryParticle objects.

This is the method called at the beginning of each event.

In practice, actual vertices and particles creation is delegated to an other class
G4VPrimaryGenerator

Very recommended, as this makes easy re-use of code for generating primary particles
— And several concrete implementations of these exist in Geant4 (see after)

From G4VPrimaryGenerator, you may either
— Inherit to implement your own, implementing the method
void GeneratePrimaryVertex(G4Event* event);

— Or use some of the existing concrete helper implementations (details later):
* GA4ParticleGun, G4GeneralParticleSource, G4SingleParticleSource, G4HEPEvtinterface

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

17

2"d example of a G4VUserPrimaryGeneratorAction,
using a G4VPrimaryGenerator : G4ParticleGun (1/2)

void G4ParticleGun::GeneratePrimaryVertex(G4Event* evt) Sample code of G4ParticleGun class.
{ It is defined in geant4 : you don’t have
if(particle_definition==0) return; to provide it | But just use it (see after).

// create a new vertex

G4PrimaryVertex® vertex = new G4PrimaryVertex(particle_position,particle_time);

// create new primaries and set them to the vertex

G4double mass = particle_definition->GetPDGMass();

for(G4int i=0; ikNumberOfParticlesToBeGenerated; i++){
G4PrimaryParticle* particle = new G4PrimaryParticle(particle_definition);

particle->SetKineticEnergy(particle_energy);

particle->SetMass(mass);

particle->SetMomentumDirection(particle_momentum_direction);

particle->SetCharge(particle_charge);

particle->SetPolarization(particle_polarization.x(), particle_polarization.y(), particle_polarization.z());

vertex->SetPrimary(particle);

evt->AddPrimaryVertex(vertex);

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

18

2"d example of a G4VUserPrimaryGeneratorAction,
using a G4VPrimaryGenerator : G4ParticleGun (2/2)

MyPrimaryGeneratorAction::MyPrimaryGeneratorAction()

{ N

class MyPrimaryGeneratorAction : public G4VUserPrimaryGeneratorAction

Constructor (ie, called once)

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

2"d example of a G4VUserPrimaryGeneratorAction,
using a G4VPrimaryGenerator : G4ParticleGun (2/2)

MyPrimaryGeneratorAction::MyPrimaryGeneratorAction()

{

Gdint n_particle = 1; / G4ParticleGun: public G4VPrimaryGenerator
fparticleGun = new G4ParticleGun(n_particle);

Constructor (ie, called once)

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

2"d example of a G4VUserPrimaryGeneratorAction,
using a G4VPrimaryGenerator : G4ParticleGun (2/2)

Constructor (ie, called once)

MyPrimaryGeneratorAction::MyPrimaryGeneratorAction()

{
G4int n_particle = 1;
fparticleGun = new G4ParticleGun(n_particle);

Initialization of this G4ParticleGun for shooting a
// default particle kinematic same initial gamma (same E, from same X, p ...)

G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();)
G4ParticleDefinition® particle = particleTable->FindParticle("gamma");
fparticleGun->SetParticleDefinition(particle);
fparticleGun->SetParticleMomentumDirection(G4ThreeVector(0.,0.,1.));
fparticleGun->SetParticleEnergy(100.*MeV);
fparticleGun->SetParticlePosition(G4ThreeVector(0.,0.,-50*cm));

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

21

2"d example of a G4VUserPrimaryGeneratorAction,
using a G4VPrimaryGenerator : G4ParticleGun (2/2)

MyPrimaryGeneratorAction::MyPrimaryGeneratorAction()
{
- G4int n_particle = 1;
§ fparticleGun = new G4ParticleGun(n_particle);
8
?3 // default particle kinematic
9 G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();
g G4ParticleDefinition® particle = particleTable->FindParticle("gamma");
S fparticleGun->SetParticleDefinition(particle);
*2 fparticleGun->SetParticleMomentumDirection(G4ThreeVector(0.,0.,1.));
S fparticleGun->SetParticleEnergy(100.*MeV);
fparticleGun->SetParticlePosition(G4ThreeVector(0.,0.,-50*cm));
}
'§ & | void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
o8|
-§ < fparticleGun->GeneratePrimaryVertex(anEvent);
58!

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay 22

Built-in G4AVPrimaryGenerator classes

* Geant4 provides concrete implementations for G4VPrimaryGenerator:

G4VPrimaryGenerator

G4ParticleGun / \ G4HEPEvtinterface

G4GeneralParticleSource | | G4SingleParticleSource

(used by G4GeneralParticleSource)

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

G4ParticleGun

The simplest G4VPrimaryGenerator implementation:
— Shoot one or several particle(s) at a time,
— All of same fixed type, energy, momentum direction, position, time, etc.

Particle gun configured with methods:

SetNumberOfParticles(G4int) SetParticleEnergy(G4double)
SetParticleDefinition(G4ParticleDefinition™) SetParticleTime(G4double)
SetParticleMomentum(G4ParticleMomentum) SetParticlePosition(G4ThreeVector)

SetParticleMomentumDirection(G4ThreeVector) SetParticlePolarization(G4ThreeVector)

Simple, and a convenient tool to start with, and that can be used for
more advanced and randomized generation (and example after).

G4ParticleGun comes together with a messenger (it creates it):

— Meaning that once you have created a G4ParticleGun object in memory, its
messenger is also created, and you have access interactively to the menu:

Idle > /gun/
— With commands like: /gun/energy 10 MeV ; /gun/direction 00 1 ; etc...

— You then just need to have the simple GeneratePrimaryVertex(anEvent) call in
your MyPrimaryGeneratorAction::GeneratePrimaries(G4Event™* anEvent), all
the configuration of the particle gun will be done interactively.

Example with randomizing a direction

Our first simple example: shooting a gamma, with particleGun fully
configured in constructor of MyPrimaryGeneratorAction:

void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)

{

fparticleGun->GeneratePrimaryVertex(anEvent);

} Note: case you can all configure your particle gun interactively

An example of e*e” generation, with random direction (assumes the rest is
configured in MyPrimaryGeneratorAction constructor or interactively) :

void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)

{
// shoot one electron (ie: add one electron to anEvent):
fparticleGun->SetParticleDefinition(G4Electron::Definition());
fparticleGun->SetParticleMomentum(G4RandomDirection());
fparticleGun->GeneratePrimaryVertex(anEvent);
// shoot one positron (ie: add one positron to anEvent):
fparticleGun->SetParticleDefinition(G4Positron::Definition());
fparticleGun->SetParticleMomentum(G4RandomDirection());
fparticleGun->GeneratePrimaryVertex(anEvent);

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

25

An other example, more granular

Previous example was generating particles uniformly in full angular space.

If you need to focus the production in some angular space (not uniform
here), you may do something like:

void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
{

// shoot one electron (ie: add one electron to anEvent):

fparticleGun->SetParticleDefinition(G4Electron::Definition());

G4double dtheta = 10.*deg;

G4double dphi = 25.*deg;

G4double theta = G4UniformRand()*dtheta;

G4double phi = G4UniformRand()*dphi;

G4ThreeVector randomDirection(sin(theta)*sin(phi),
sin(theta)*cos(phi),
cos(theta)));

fParticleGun->SetParticleMomentumDirection(randomDirection);

fparticleGun->GeneratePrimaryVertex(anEvent);

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

26

G4GeneralParticleSource (GPS)

A more advanced implementation of G4VPrimaryGenerator

It uses G4SingleParticleSource
— Itself a G4VPrimaryGenerator

— And which is an extended version of G4ParticleGun, allowing particles to be shoot
according to distributions

GPS Relies on the concept of “source”
— The source emits the primary particles;
* Of a given particle type
— Sources can be combined with relative intensities to form a more advanced source.
* Eg: built an Am/Be neutron + gamma source

A source emits primary particles randomly according to

— Position distribution

* le the “source” distribution (point-like, surface, 3D...)
— Energy, angular spectra

* Built-in (uniform, exponential, gaussian, etc.)

* Or user defined (providing an histogram-like data)

Sources can be biased to enhance some phase space regions
— And related statistical weight is provided

G4GeneralParticleSource (GPS)

e Using the GPS in your primary generator action:

MyPrimaryGeneratorAction::PrimaryGeneratorAction()

{
fgps = new G4GeneralParticleSource();
}
void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
{
fgps->GeneratePrimaryVertex(anEvent);
}

e As for the G4ParticleGun, GPS comes together with a messenger, which
commands are under:

Idle > /gps/
— Which has a *rich* set of commands

— All details can be found at:

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/GettingStarted/
generalParticleSource.html

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

28

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/GettingStarted/generalParticleSource.html
https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/GettingStarted/generalParticleSource.html
https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/GettingStarted/generalParticleSource.html
https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/GettingStarted/generalParticleSource.html
https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/GettingStarted/generalParticleSource.html

geant4/examples/extended/eventgenerator/exgps/macros/
testl.gdmac : GPS Command Example 1

Macro file commands:

Shooting protons

Point-like source

/gps/particle proton i/
/gps/pos/type Point

/gps/pos/centre 1.2.1.cm <—

Source position

/gps/ang/type iso

/gps/energy 2. MeV :\

Isotropic source

Protons energy

Resulting distributions

= 10
10000 F 4 =
7500 F 2 B
5000 E o E
2500 2 F
o: | | R |
3 [N 15 -4 -2 0 2 4
Source Energy Spectrum Source ¥—7 distributicn
L E L b
il S | Ll R 1
-4 -z 0 z 4 -4 -z 0z 4
Source ¥—7 distribution Source Y—Z distribution
154

100

50

o 160 200 300 0 100 200 300

Souree ¢os(theta)—phi distribution Souree theta/phi distribution

geant4/examples/extended/eventgenerator/exgps/macros/
test31.gdmac : GPS Command Example 31

two beams in a generator

#

beam #1

default intensity is 1 now change to 5.
/gps/source/intensity 5.

#

/gps/particle proton

/gps/pos/type Beam

#

the incident surface is in the y-z plane
/gps/pos/rot1010
/gps/pos/rot2001

#

the beam spot is centered at the origin and is of
1d gaussian shape with a 1 mm central plateau
/gps/pos/shape Circle

/gps/pos/centre 0.0.0. mm
/gps/pos/radius 1. mm
/gps/pos/sigma_r .2 mm

#

the beam is travelling along the X_axis with
5 degrees dispersion
/gps/ang/rot1001
/gps/ang/rot2010

/gps/ang/type beam1d
/gps/ang/sigma_r 5. deg

#

the beam energy is in gaussian profile
centered at 400 MeV

/gps/ene/type Gauss

/gps/ene/mono 400 MeV
/gps/ene/sigma 50. MeV

(macro continuation...)

beam #2

2x the instensity of beam #1

/gps/source/add 10.

#

this is a electron beam
/gps/particle e-
/gps/pos/type Beam

it beam spot is of 2d gaussian profile

with a 1x2 mm2 central plateau

#itis in the x-y plane centred at the orgin
/gps/pos/centre 0.0.0. mm

/gps/pos/halfx 0.5 mm
/gps/pos/halfy 1. mm
/gps/pos/sigma_x 0.1 mm

the spread in y direction is stronger

/gps/pos/sigma_y 0.2 mm
#

#the beam is travelling along -Z_axis

/gps/ang/type beam2d
/gps/ang/sigma_x 2. deg
/gps/ang/sigma_y 1. deg
gaussian energy profile
/gps/ene/type Gauss
/gps/ene/mono 600 MeV
/gps/ene/sigma 50. MeV

3000

2050

1020

0.4
0.2

0.2
—0.4

0.5

-0.5

Resulting distributions

200 400 G600 800
Source Energy Spectrum
__I | 11 1 | 11 1 | 11 1 | 11 1 | 1
0.4 0.2 0 0.2 04
Source X—Z distribution
E 11 1 1 | 11 1 1 | 11 1 1 | 11
o] 100 200 300

Souree ¢os(theta)—phi distribution

0.4
0.2

—0.2
-0.4

0.4
0.2

—0.2
—a.4

158

100

50

—04 0.2 0O 0.2 0.4

Source ¥—7 distributicn

-0.4 -02 0 0.2 0.4

Source T—Z distribution

=

100 200 300

Souree theta/phi distribution

Interfaces to HEPEvt and HepMC

* Interface implementations of G4VPrimaryGenerator to standard
formats in HEP:

— useful for experiment-specific primary generator implementation

e G4HEPEvtinterface:

— Suitable to /HEPEVT/ common block, which many of (FORTRAN) HEP
physics generators are compliant to

— ASCII file input (4-vectors from HEP generator code)

* More can be found in geant4/examples/extended/eventgenerator:

— Showing an interface to HepMC
* which a few new (C++) HEP physics generators are compliant to
— Eg: Pythia
— ASCII file input or direct linking to a generator through HepMC

Summary

User must derive from G4VUserPrimaryGeneratorAction and
— Implement GeneratePrimaries(G4Event* anEvent)
— Register it to the run manager

— Very recommended : use internally a G4VPrimaryGenerator for actual
particle generation
e If you implement your own generator, please start from this class.

Generators must be derived from G4VPrimaryGenerator
— Implementing GeneratePrimaryVertex(G4Event* event)
— G4PrimaryVertex objects will be generated
— To which G4PrimaryParticle objects will be associated

Some built-in generators are provided:
— G4ParticleGun, for simple cases
— G4GeneralParticleSource for more complex ones
— Interface G4HEPEvtinterface

Geant4 PHENIICS & IN2P3 Tutorial, 16 — 20 May 2022, Orsay

32

For information : what happens then to
your “primary particles” ?

« After MyPrimaryGeneratorAction:: GeneratePrimaries(G4Event* anEvent) call :

— Geant4 makes the conversion :

* G4PrimaryVextex + G4PrimaryParticle objects — G4Tracks objects

* Remember, G4Track has:
— particle type information : mass, charge, PDG, etc.
— dynamic information : position, time, energy, momentum, polarization, etc.

— And puts these tracks on the urgent (= normal) stack
* More on stacks later : for now, it is a stack of particle waiting for being tracked

 Then, the event simulation starts :
— the G4Track object on top of the stack is popped up and tracked in your detector representation

Why G4PrimaryVertex and G4PrimaryParticle, and not directly G4Tracks in
GeneratePrimaries(G4Event™ anEvent) ?
— GA4Track is (too) specific to Geant4, with other information of no meaning for the generation

* “GA4TouchableHistory” geometrical information
* Or pointer to a G4Step, etc.
— G4PrimaryVertex and G4PrimaryParticle are free from this G4-specific stuff, and hence offer easier
interfacing to standard particle and vertex representations
* Like HEPEvt, HEPMC, etc.

