
Primary Particles
Geant4 PHENIICS & IN2P3 Tutorial,

16 – 20 May 2022,

Orsay

Marc Verderi

LLR, Ecole polytechnique

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 1

Credits…

• Filiation from at least Sébastien Incerti (CENBG), Makoto Asai,
Tatsumi Koi, Dennis Wright (SLAC)

• And certainly other people !

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 2

Where will we look
in the toolkit ?

Main category and directory
involved:

• Run

– geant4/source/run

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 3

Introduction
• Here, “primary particles” stand for the particles

you need to start with in your simulation at the
beginning of each event:
– For example:

• Positrons in a PET scan imaging system in a medical application
• Final state products in a proton-proton collision at the LHC

• These particles are then transported in your geometry…

– … with interactions, creation of secondary particles…
– … and related detector response.

• The primary particles must be particles that Geant4 is able to track:

– Ie : don’t ask Geant4 for tracking a Higgs boson or a SUSY particle !
• Unless you have extended yourself the physics of Geant4 to do so…

– But provide instead the decay products of these:
• Eg : particles resulting from hadronisation of 𝑏𝑏 … or decays of 𝑍𝑍 in case of a Higgs, etc.

• You have to produce these primary particles taking some action

– It is explained here how.

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 4

Introduction
• Here, “primary particles” stand for the particles

you need to start with in your simulation at the
beginning of each event:
– For example:

• Positrons in a PET scan imaging system in a medical application
• Final state products in a proton-proton collision at the LHC

• These particles are then transported in your geometry…

– … with interactions, creation of secondary particles…
– … and related detector response.

• The primary particles must be particles that Geant4 is able to track:

– Ie : don’t ask Geant4 for tracking a Higgs boson or a SUSY particle !
• Unless you have extended yourself the physics of Geant4 to do so…

– But provide instead the decay products of these:
• Eg : particles resulting from hadronisation of 𝑏𝑏 … or decays of 𝑍𝑍 in case of a Higgs, etc.

• You have to produce these primary particles taking some action

– It is explained here how.

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 5

Introduction
• Here, “primary particles” stand for the particles

you need to start with in your simulation at the
beginning of each event:
– For example:

• Positrons in a PET scan imaging system in a medical application
• Final state products in a proton-proton collision at the LHC

• These particles are then transported in your geometry…

– … with interactions, creation of secondary particles…
– … and related detector response.

• The primary particles must be particles that Geant4 is able to track:

– Ie : don’t ask Geant4 for tracking a Higgs boson or a SUSY particle !
• Unless you have extended yourself the physics of Geant4 to do so…

– But provide instead the decay products of these:
• Eg : particles resulting from hadronisation of 𝑏𝑏 … or decays of 𝑍𝑍 in case of a Higgs, etc.

• You have to produce these primary particles taking some action

– It is explained here how.

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 6

A mandatory operation
• Defining this action to produce “primary particles” is one of the three mandatory

operations you have to do to make a working simulation.
– Remember the two other mandatory operations:

• detector construction: inheriting from G4VUserDetectorConstruction
• physics list: inheriting from G4VUserPhysicsList

• You define this action inheriting from the G4VUserPrimaryGeneratorAction base class:
– Let’s call your concrete class “MyPrimaryGeneratorAction”

• To take effect, a MyPrimaryGeneratorAction object must be passed to the runManager:
– If Geant4 version  Geant4 v10.0:

• In your action initialization class:
void MyActionInitialization::Build() const
{
 SetUserAction(new MyPrimaryGeneratorAction);
}

• And in your main program:
runManager->SetUserInitialization(new MyActionInitialization);

– if Geant4 version < Geant4 v10.0:
• In your main program:

runManager->SetUserAction(new MyPrimaryGeneratorAction); [Kept in v10.0 for backward compatibility]

• During the event loop, this action will be invoked at the beginning of each event.

– This invocation defines the start of the event.

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 7

G4RunManager* runManager = new G4RunManager;

G4RunManager* runManager = new G4RunManager;
or
G4MTRunManager* runManager = new G4MTRunManager;

Si
n

ce
 G

e
an

t4
 v

1
0

.0

B
ef

o
re

G

e
an

t4

v1
0

.0

A mandatory operation
• Defining this action to produce “primary particles” is one of the three mandatory

operations you have to do to make a working simulation.
– Remember the two other mandatory operations:

• detector construction: inheriting from G4VUserDetectorConstruction
• physics list: inheriting from G4VUserPhysicsList

• You define this action inheriting from the G4VUserPrimaryGeneratorAction base class:
– Let’s call your concrete class “MyPrimaryGeneratorAction”

• To take effect, a MyPrimaryGeneratorAction object must be passed to the runManager:

• In your action initialization class:
void MyActionInitialization::Build() const
{
 SetUserAction(new MyPrimaryGeneratorAction);
}

• And in your main program:
runManager->SetUserInitialization(new MyActionInitialization);

– if Geant4 version < Geant4 v10.0 (obsoleting):
• In your main program:

runManager->SetUserAction(new MyPrimaryGeneratorAction); [Kept > v10.0 for backward compatibility]

• During the event loop, this action will be invoked at the beginning of each event.

– This invocation defines the start of the event.

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 8

G4RunManager* runManager = new G4RunManager;

G4RunManager* runManager = new G4RunManager;
or
G4MTRunManager* runManager = new G4MTRunManager;

A mandatory operation
• Defining this action to produce “primary particles” is one of the three mandatory

operations you have to do to make a working simulation.
– Remember the two other mandatory operations:

• detector construction: inheriting from G4VUserDetectorConstruction
• physics list: inheriting from G4VUserPhysicsList

• You define this action inheriting from the G4VUserPrimaryGeneratorAction base class:
– Let’s call your concrete class “MyPrimaryGeneratorAction”

• To take effect, a MyPrimaryGeneratorAction object must be passed to the runManager:

• In your action initialization class:
void MyActionInitialization::Build() const
{
 SetUserAction(new MyPrimaryGeneratorAction);
}

• And in your main program:
runManager->SetUserInitialization(new MyActionInitialization);

– if Geant4 version < Geant4 v10.0 (obsoleting):
• In your main program:

runManager->SetUserAction(new MyPrimaryGeneratorAction); [Kept > v10.0 for backward compatibility]

• During the event loop, this action will be invoked at the beginning of each event.

– This invocation defines the start of the event.

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 9

G4RunManager* runManager = new G4RunManager;

G4RunManager* runManager = new G4RunManager;
or
G4MTRunManager* runManager = new G4MTRunManager;

A mandatory operation
• Defining this action to produce “primary particles” is one of the three mandatory

operations you have to do to make a working simulation.
– Remember the two other mandatory operations:

• detector construction: inheriting from G4VUserDetectorConstruction
• physics list: inheriting from G4VUserPhysicsList

• You define this action inheriting from the G4VUserPrimaryGeneratorAction base class:
– Let’s call your concrete class “MyPrimaryGeneratorAction”

• To take effect, a MyPrimaryGeneratorAction object must be passed to the runManager:

• In your action initialization class:
void MyActionInitialization::Build() const
{
 SetUserAction(new MyPrimaryGeneratorAction);
}

• And in your main program:
runManager->SetUserInitialization(new MyActionInitialization);

– if Geant4 version < Geant4 v10.0 (obsoleting):
• In your main program:

runManager->SetUserAction(new MyPrimaryGeneratorAction); [Kept > v10.0 for backward compatibility]

• During the event loop, this action will be invoked at the beginning of each event.

– This invocation defines the start of the event.

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 10

G4RunManager* runManager = new G4RunManager;

G4RunManager* runManager = new G4RunManager;
or
G4MTRunManager* runManager = new G4MTRunManager;

A mandatory operation
• Defining this action to produce “primary particles” is one of the three mandatory

operations you have to do to make a working simulation.
– Remember the two other mandatory operations:

• detector construction: inheriting from G4VUserDetectorConstruction
• physics list: inheriting from G4VUserPhysicsList

• You define this action inheriting from the G4VUserPrimaryGeneratorAction base class:
– Let’s call your concrete class “MyPrimaryGeneratorAction”

• To take effect, a MyPrimaryGeneratorAction object must be passed to the runManager:

• In your action initialization class:
void MyActionInitialization::Build() const
{
 SetUserAction(new MyPrimaryGeneratorAction);
}

• And in your main program:
runManager->SetUserInitialization(new MyActionInitialization);

– if Geant4 version < Geant4 v10.0 (obsoleting):
• In your main program:

runManager->SetUserAction(new MyPrimaryGeneratorAction); [Kept > v10.0 for backward compatibility]

• During the event loop, this action will be invoked at the beginning of each event.

– This invocation defines the start of the event.

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 11

G4RunManager* runManager = new G4RunManager;

G4RunManager* runManager = new G4RunManager;
or
G4MTRunManager* runManager = new G4MTRunManager;

G4PrimaryVertex objects
= {position, time}

Primary particle generation, in principle

• For each event, you will define:

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 12

G4PrimaryVertex objects
= {position, time}

G4PrimaryParticle objects
= {PDG, mass, momentum,

polarization…}

Primary particle generation, in principle

• For each event, you will define:

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 13

G4PrimaryVertex objects
= {position, time}

G4PrimaryParticle objects
= {PDG, mass, momentum,

polarization…}

SetDaughter(daughter1);

SetDaughter(daughter2);

SetDaughter(daughter3);

…

daughter1
daughter2

daughter3

Primary particle generation, in principle

• For each event, you will define:

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 14

 possibility for pre-assigned
decay (e.g. B meson decay) :

Primary particle generation, in practice (1/2)

• Primary particle generation is made by your concrete class, inheriting from base class:

G4VUserPrimaryGeneratorAction

• The (pure virtual) method you must implement is
void GeneratePrimaries(G4Event* event);

• In this method, you pass to “event” the G4PrimaryVertex objects you created,
– to which you have attached the related G4PrimaryParticle objects.

• This is the method called at the beginning of each event.

• In practice, actual vertices and particles creation is delegated to an other class
G4VPrimaryGenerator

• Very recommended, as this makes easy re-use of code for generating primary particles
– And several concrete implementations of these exist in Geant4 (see after)

• From G4VPrimaryGenerator, you may either
– Inherit to implement your own, implementing the method

void GeneratePrimaryVertex(G4Event* event);
– Or use some of the existing concrete helper implementations (details later):

• G4ParticleGun, G4GeneralParticleSource, G4SingleParticleSource, G4HEPEvtInterface

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 15

First example of a G4VUserPrimaryGeneratorAction,
with today’s sample code

void EDPrimaryGeneratorAction::GeneratePrimaries(G4Event* event)
{
 // Define particle properties
 G4String particleName = "proton";
 G4ThreeVector position(0, 0, -9.*m);
 G4ThreeVector momentum(0, 0, 1.*GeV);
 G4double time = 0;

 // Get particle definition from G4ParticleTable
 G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();
 G4ParticleDefinition* particleDefinition = particleTable->FindParticle(particleName);
 if (! particleDefinition) {
 G4cerr << "Error: " << particleName << " not found in G4ParticleTable" << G4endl;
 exit(1);
 }

 // Create primary particle
 G4PrimaryParticle* primaryParticle = new G4PrimaryParticle(particleDefinition);
 primaryParticle->SetMomentum(momentum.x(), momentum.y(), momentum.z());
 primaryParticle->SetMass(particleDefinition->GetPDGMass());
 primaryParticle->SetCharge(particleDefinition->GetPDGCharge());

 // Create vertex
 G4PrimaryVertex* vertex = new G4PrimaryVertex(position, time);
 vertex->SetPrimary(primaryParticle);
 event->AddPrimaryVertex(vertex);
}

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 16

Primary particle generation, in practice (2/2)

• Primary particle generation is made by your concrete class, inheriting from base class:

G4VUserPrimaryGeneratorAction

• The (pure virtual) method you must implement is
void GeneratePrimaries(G4Event* event);

• In this method, you pass to “event” the G4PrimaryVertex objects you created,
– to which you have attached the related G4PrimaryParticle objects.

• This is the method called at the beginning of each event.

• In practice, actual vertices and particles creation is delegated to an other class
G4VPrimaryGenerator

• Very recommended, as this makes easy re-use of code for generating primary particles
– And several concrete implementations of these exist in Geant4 (see after)

• From G4VPrimaryGenerator, you may either
– Inherit to implement your own, implementing the method

void GeneratePrimaryVertex(G4Event* event);
– Or use some of the existing concrete helper implementations (details later):

• G4ParticleGun, G4GeneralParticleSource, G4SingleParticleSource, G4HEPEvtInterface

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 17

2nd example of a G4VUserPrimaryGeneratorAction,
using a G4VPrimaryGenerator : G4ParticleGun (1/2)

void G4ParticleGun::GeneratePrimaryVertex(G4Event* evt)

{

 if(particle_definition==0) return;

 // create a new vertex

 G4PrimaryVertex* vertex = new G4PrimaryVertex(particle_position,particle_time);

 // create new primaries and set them to the vertex

 G4double mass = particle_definition->GetPDGMass();

 for(G4int i=0; i<NumberOfParticlesToBeGenerated; i++){

 G4PrimaryParticle* particle = new G4PrimaryParticle(particle_definition);

 particle->SetKineticEnergy(particle_energy);

 particle->SetMass(mass);

 particle->SetMomentumDirection(particle_momentum_direction);

 particle->SetCharge(particle_charge);

 particle->SetPolarization(particle_polarization.x(), particle_polarization.y(), particle_polarization.z());

 vertex->SetPrimary(particle);

 }

 evt->AddPrimaryVertex(vertex);

}
Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 18

Sample code of G4ParticleGun class.
It is defined in geant4 : you don’t have
to provide it ! But just use it (see after).

MyPrimaryGeneratorAction::MyPrimaryGeneratorAction()
{
 G4int n_particle = 1;
 fparticleGun = new G4ParticleGun(n_particle);

 // default particle kinematic
 G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();
 G4ParticleDefinition* particle = particleTable->FindParticle("gamma");
 fparticleGun->SetParticleDefinition(particle);
 fparticleGun->SetParticleMomentumDirection(G4ThreeVector(0.,0.,1.));
 fparticleGun->SetParticleEnergy(100.*MeV);
 fparticleGun->SetParticlePosition(G4ThreeVector(0.,0.,-50*cm));
}

void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
{
 fparticleGun->GeneratePrimaryVertex(anEvent);
}

2nd example of a G4VUserPrimaryGeneratorAction,
using a G4VPrimaryGenerator : G4ParticleGun (2/2)

class MyPrimaryGeneratorAction : public G4VUserPrimaryGeneratorAction

 C

o
n

st
ru

ct
o

r
(i

e,
 c

al
le

d
 o

n
ce

)

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 19

MyPrimaryGeneratorAction::MyPrimaryGeneratorAction()
{
 G4int n_particle = 1;
 fparticleGun = new G4ParticleGun(n_particle);

 // default particle kinematic
 G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();
 G4ParticleDefinition* particle = particleTable->FindParticle("gamma");
 fparticleGun->SetParticleDefinition(particle);
 fparticleGun->SetParticleMomentumDirection(G4ThreeVector(0.,0.,1.));
 fparticleGun->SetParticleEnergy(100.*MeV);
 fparticleGun->SetParticlePosition(G4ThreeVector(0.,0.,-50*cm));
}

void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
{
 fparticleGun->GeneratePrimaryVertex(anEvent);
}

2nd example of a G4VUserPrimaryGeneratorAction,
using a G4VPrimaryGenerator : G4ParticleGun (2/2)

G4ParticleGun: public G4VPrimaryGenerator

 C

o
n

st
ru

ct
o

r
(i

e,
 c

al
le

d
 o

n
ce

)

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 20

MyPrimaryGeneratorAction::MyPrimaryGeneratorAction()
{
 G4int n_particle = 1;
 fparticleGun = new G4ParticleGun(n_particle);

 // default particle kinematic
 G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();
 G4ParticleDefinition* particle = particleTable->FindParticle("gamma");
 fparticleGun->SetParticleDefinition(particle);
 fparticleGun->SetParticleMomentumDirection(G4ThreeVector(0.,0.,1.));
 fparticleGun->SetParticleEnergy(100.*MeV);
 fparticleGun->SetParticlePosition(G4ThreeVector(0.,0.,-50*cm));
}

void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
{
 fparticleGun->GeneratePrimaryVertex(anEvent);
}

2nd example of a G4VUserPrimaryGeneratorAction,
using a G4VPrimaryGenerator : G4ParticleGun (2/2)

Initialization of this G4ParticleGun for shooting a
same initial gamma (same E, from same 𝑥 , 𝑝 …)

 C

o
n

st
ru

ct
o

r
(i

e,
 c

al
le

d
 o

n
ce

)

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 21

MyPrimaryGeneratorAction::MyPrimaryGeneratorAction()
{
 G4int n_particle = 1;
 fparticleGun = new G4ParticleGun(n_particle);

 // default particle kinematic
 G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();
 G4ParticleDefinition* particle = particleTable->FindParticle("gamma");
 fparticleGun->SetParticleDefinition(particle);
 fparticleGun->SetParticleMomentumDirection(G4ThreeVector(0.,0.,1.));
 fparticleGun->SetParticleEnergy(100.*MeV);
 fparticleGun->SetParticlePosition(G4ThreeVector(0.,0.,-50*cm));
}

void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
{
 fparticleGun->GeneratePrimaryVertex(anEvent);
}

2nd example of a G4VUserPrimaryGeneratorAction,
using a G4VPrimaryGenerator : G4ParticleGun (2/2)

 C

o
n

st
ru

ct
o

r
(i

e,
 c

al
le

d
 o

n
ce

)

C

al
le

d
 a

t
ea

ch

ev
en

t
st

ar
t

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 22

Built-in G4VPrimaryGenerator classes

• Geant4 provides concrete implementations for G4VPrimaryGenerator:

 G4VPrimaryGenerator

G4ParticleGun

G4GeneralParticleSource G4SingleParticleSource

G4HEPEvtInterface

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 23

(used by G4GeneralParticleSource)

G4ParticleGun
• The simplest G4VPrimaryGenerator implementation:

– Shoot one or several particle(s) at a time,
– All of same fixed type, energy, momentum direction, position, time, etc.

• Particle gun configured with methods:

• Simple, and a convenient tool to start with, and that can be used for
more advanced and randomized generation (and example after).

• G4ParticleGun comes together with a messenger (it creates it):
– Meaning that once you have created a G4ParticleGun object in memory, its

messenger is also created, and you have access interactively to the menu:
Idle > /gun/

– With commands like: /gun/energy 10 MeV ; /gun/direction 0 0 1 ; etc…
– You then just need to have the simple GeneratePrimaryVertex(anEvent) call in

your MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent) , all
the configuration of the particle gun will be done interactively.

SetNumberOfParticles(G4int) SetParticleEnergy(G4double)

SetParticleDefinition(G4ParticleDefinition*) SetParticleTime(G4double)

SetParticleMomentum(G4ParticleMomentum) SetParticlePosition(G4ThreeVector)

SetParticleMomentumDirection(G4ThreeVector) SetParticlePolarization(G4ThreeVector)

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 24

Example with randomizing a direction
• Our first simple example: shooting a gamma, with particleGun fully

configured in constructor of MyPrimaryGeneratorAction:

• An example of e+e- generation, with random direction (assumes the rest is
configured in MyPrimaryGeneratorAction constructor or interactively) :

void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
{
 fparticleGun->GeneratePrimaryVertex(anEvent);
}

void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
{
 // shoot one electron (ie: add one electron to anEvent):
 fparticleGun->SetParticleDefinition(G4Electron::Definition());
 fparticleGun->SetParticleMomentum(G4RandomDirection());
 fparticleGun->GeneratePrimaryVertex(anEvent);
 // shoot one positron (ie: add one positron to anEvent):
 fparticleGun->SetParticleDefinition(G4Positron::Definition());
 fparticleGun->SetParticleMomentum(G4RandomDirection());
 fparticleGun->GeneratePrimaryVertex(anEvent);
}

Note: case you can all configure your particle gun interactively

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 25

An other example, more granular
• Previous example was generating particles uniformly in full angular space.

• If you need to focus the production in some angular space (not uniform
here), you may do something like:

void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
{
 // shoot one electron (ie: add one electron to anEvent):
 fparticleGun->SetParticleDefinition(G4Electron::Definition());
 G4double dtheta = 10.*deg;
 G4double dphi = 25.*deg;
 G4double theta = G4UniformRand()*dtheta;
 G4double phi = G4UniformRand()*dphi;
 G4ThreeVector randomDirection(sin(theta)*sin(phi),
 sin(theta)*cos(phi),
 cos(theta)));
 fParticleGun->SetParticleMomentumDirection(randomDirection);
 fparticleGun->GeneratePrimaryVertex(anEvent);
}

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 26

G4GeneralParticleSource (GPS)
• A more advanced implementation of G4VPrimaryGenerator

• It uses G4SingleParticleSource
– Itself a G4VPrimaryGenerator

– And which is an extended version of G4ParticleGun, allowing particles to be shoot
according to distributions

• GPS Relies on the concept of “source”
– The source emits the primary particles;

• Of a given particle type

– Sources can be combined with relative intensities to form a more advanced source.
• Eg: built an Am/Be neutron + gamma source

• A source emits primary particles randomly according to
– Position distribution

• Ie the “source” distribution (point-like, surface, 3D…)

– Energy, angular spectra
• Built-in (uniform, exponential, gaussian, etc.)

• Or user defined (providing an histogram-like data)

• Sources can be biased to enhance some phase space regions
– And related statistical weight is provided

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 27

G4GeneralParticleSource (GPS)
• Using the GPS in your primary generator action:

• As for the G4ParticleGun, GPS comes together with a messenger, which
commands are under:

Idle > /gps/

– Which has a *rich* set of commands

– All details can be found at:
https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/GettingStarted/
generalParticleSource.html

MyPrimaryGeneratorAction::PrimaryGeneratorAction()
{
 fgps = new G4GeneralParticleSource();
}

void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
{
 fgps->GeneratePrimaryVertex(anEvent);
}

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 28

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/GettingStarted/generalParticleSource.html
https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/GettingStarted/generalParticleSource.html
https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/GettingStarted/generalParticleSource.html
https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/GettingStarted/generalParticleSource.html
https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/GettingStarted/generalParticleSource.html

geant4/examples/extended/eventgenerator/exgps/macros/
test1.g4mac : GPS Command Example 1

Macro file commands:

/gps/particle proton

/gps/pos/type Point

/gps/pos/centre 1. 2. 1. cm

/gps/ang/type iso

/gps/energy 2. MeV

Resulting distributions

 Shooting protons

Point-like source

Source position

Isotropic source

Protons energy

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 29

geant4/examples/extended/eventgenerator/exgps/macros/
test31.g4mac : GPS Command Example 31

 # two beams in a generator

 #

 # beam #1

 # default intensity is 1 now change to 5.

 /gps/source/intensity 5.

 #

 /gps/particle proton

 /gps/pos/type Beam

 #

 # the incident surface is in the y-z plane

 /gps/pos/rot1 0 1 0

 /gps/pos/rot2 0 0 1

 #

 # the beam spot is centered at the origin and is of

 # 1d gaussian shape with a 1 mm central plateau

 /gps/pos/shape Circle

 /gps/pos/centre 0. 0. 0. mm

 /gps/pos/radius 1. mm

 /gps/pos/sigma_r .2 mm

 #

 # the beam is travelling along the X_axis with

 # 5 degrees dispersion

 /gps/ang/rot1 0 0 1

 /gps/ang/rot2 0 1 0

 /gps/ang/type beam1d

 /gps/ang/sigma_r 5. deg

 #

 # the beam energy is in gaussian profile

 # centered at 400 MeV

 /gps/ene/type Gauss

 /gps/ene/mono 400 MeV

 /gps/ene/sigma 50. MeV

 (macro continuation…)

 # beam #2

 # 2x the instensity of beam #1

 /gps/source/add 10.

 #

 # this is a electron beam

 /gps/particle e-

 /gps/pos/type Beam

 # it beam spot is of 2d gaussian profile

 # with a 1x2 mm2 central plateau

 # it is in the x-y plane centred at the orgin

 /gps/pos/centre 0. 0. 0. mm

 /gps/pos/halfx 0.5 mm

 /gps/pos/halfy 1. mm

 /gps/pos/sigma_x 0.1 mm

 # the spread in y direction is stronger

 /gps/pos/sigma_y 0.2 mm

 #

 #the beam is travelling along -Z_axis

 /gps/ang/type beam2d

 /gps/ang/sigma_x 2. deg

 /gps/ang/sigma_y 1. deg

 # gaussian energy profile

 /gps/ene/type Gauss

 /gps/ene/mono 600 MeV

 /gps/ene/sigma 50. MeV

Resulting distributions

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 30

Interfaces to HEPEvt and HepMC

• Interface implementations of G4VPrimaryGenerator to standard
formats in HEP:
– useful for experiment-specific primary generator implementation

• G4HEPEvtInterface:
– Suitable to /HEPEVT/ common block, which many of (FORTRAN) HEP

physics generators are compliant to
– ASCII file input (4-vectors from HEP generator code)

• More can be found in geant4/examples/extended/eventgenerator:
– Showing an interface to HepMC

• which a few new (C++) HEP physics generators are compliant to
– Eg : Pythia

– ASCII file input or direct linking to a generator through HepMC

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 31

Summary
• User must derive from G4VUserPrimaryGeneratorAction and

– Implement GeneratePrimaries(G4Event* anEvent)
– Register it to the run manager
– Very recommended : use internally a G4VPrimaryGenerator for actual

particle generation
• If you implement your own generator, please start from this class.

• Generators must be derived from G4VPrimaryGenerator
– Implementing GeneratePrimaryVertex(G4Event* event)
– G4PrimaryVertex objects will be generated
– To which G4PrimaryParticle objects will be associated

• Some built-in generators are provided:
– G4ParticleGun, for simple cases
– G4GeneralParticleSource for more complex ones
– Interface G4HEPEvtInterface

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 32

For information : what happens then to
your “primary particles” ?

• After MyPrimaryGeneratorAction:: GeneratePrimaries(G4Event* anEvent) call :
– Geant4 makes the conversion :

• G4PrimaryVextex + G4PrimaryParticle objects  G4Tracks objects

• Remember, G4Track has:
– particle type information : mass, charge, PDG, etc.

– dynamic information : position, time, energy, momentum, polarization, etc.

– And puts these tracks on the urgent (= normal) stack
• More on stacks later : for now, it is a stack of particle waiting for being tracked

• Then, the event simulation starts :
– the G4Track object on top of the stack is popped up and tracked in your detector representation

• Why G4PrimaryVertex and G4PrimaryParticle, and not directly G4Tracks in
GeneratePrimaries(G4Event* anEvent) ?
– G4Track is (too) specific to Geant4, with other information of no meaning for the generation

• “G4TouchableHistory” geometrical information

• Or pointer to a G4Step, etc.

– G4PrimaryVertex and G4PrimaryParticle are free from this G4-specific stuff, and hence offer easier
interfacing to standard particle and vertex representations
• Like HEPEvt, HEPMC, etc.

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 33

