
Random Numbers
Geant4 PHENIICS & IN2P3 Tutorial,
16 – 20 May 2022,
Orsay

Marc Verderi
LLR, Ecole polytechnique

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 1

Where will we look
in the toolkit ?

Main categories and
directories involved:

• Global:

– geant4/source/global/
HEPRandom

• Run

– geant4/source/run

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 2

Introduction
• Monte Carlo simulation relies on random number generators.

• To mimic the random nature of processes

• A random number generator is actually a “pseudo-random” generator
• As it uses a deterministic algorithm

• Several generation techniques exist, with various quality vs. speed characteristics

• A random number generator is often called an “engine”.

• A random number generator uses a “seed” as starting point
• A seed is an integer or a set of integers
• And from a same seed, an engine generates always a same sequence of random numbers

• A random number generator has also a “status”:
• Starting from a given seed, and after N numbers generation, the engine is in some state, that can be saved as a

status
• This status can be reloaded later on, and the engine will continue its generation as if it hasn’t been interrupted

• An engine generates uniform random numbers in the]0, 1[range.
• Other distributions (exponential, gaussian, …) can be obtained from flat distribution(s) with proper

transformations.

• Geant4 offers the ability to chose the engine, set the seed, save/reload the status.
• It is explained here the interest for this and how to do.

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 3

You can almost see the seed as a

“tag” of a random number series.

Why controlling the random number generator ?
• There are very common needs for controlling the engine

• Setting the seed(s):
• This allows to run jobs in parallels that will be statistically independent

• instead or running 10 000 000 events in one “/run/beamOn 10 000 000” command
• launch 10 jobs in parallel, each having a different seed and issue for each “/run/beamOn 1 000 000”.
• If you have 10 CPU available, you get you simulation done 10 times faster.

• Note that with today’s computers, if you have several cores on your machine, you get a simulation speed-up
just for free, running as many applications as the number of cores.

• Setting up the seed is heavily used in simulation production (and is the key of this).

• Saving the random number status
• Particularly useful in case of crash…

• in what case you need to investigate the cause of the crash.

• If a crash happens after 1M events, you would wish to skip the first 999 999 events to go directly to the one
that crashed, simulating the *same* event than the one that crashed.

• Saving the random number status allow this :
• you save the status after 999 999 events, and reload it to run the problematic event to investigate it.

• But note that saving the status is time consuming, and is something you would not do by default.

• The choice of the engine relies on speed vs accuracy considerations
• and is a more technical choice in principle
• though if this is easy to change the engine by an other one in practice.

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 4

Random number generators in Geant4
• Geant4 uses the HEPRandom module of CLHEP library:

• with documentation from https://geant4.web.cern.ch/support/user_documentation User's Guide: For
Application Developers The HEPRandom module in CLHEP

• HepRandomEngine is the abstract interface for random generators in CLHEP.
• All engines are of type HepRandomEngine

• A static instance exists, allowing the engine to be shared by all random number consumers.

• Geant4 uses this static instance of HepRandom.
• And this static instance holds a random number engine

• This engine can be changed with
• G4Random::setTheEngine(CLHEP::HepRandomEngine*);
• Don’t use CLHEP::HepRandom::setTheEngine(CLHEP::HepRandomEngine*) ! Not thread safe !
• But a default engine exists, which is

HepJamesRandom
• Above default made that you did not need to care about random numbers up to now.

• (Some) other existing engines in CLHEP are:
• DRand48Engine, RandEngine, RanluxEngine –which allows controlling the quality of the engine by “luxury”

levels- , RanecuEngine

• Changing the engine is the only things that requires (by default) C++ coding.
• All other actions to control the random number generator can be done interactively.

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 5

https://geant4.web.cern.ch/support/user_documentation
https://geant4.web.cern.ch/support/user_documentation

Controlling/piloting the random
number engine interactively
• Beyond engine choice, control of the engine can be done interactively

• Commands can be obtained simply with the help menu

• /random/setSeeds int [int [int […]]]
• Set the seed(s), the number of ints, depends on the engine

• /random/setDirectoryName [dirName]
• Set or create the directory in which to save the engine status

• /random/setSavingFlag [value]
• Turn on(off) status change at each start of run and event

• Status are saved in currentRun.rndm (for run) and currentEvent.rndm (event)

• /random/saveThisRun(or saveThisEvent)
• copy currentRun.rndm to runXXX.rndm (or currentEvent.rndm to runXXXevtYYY.rndm)

• /random/resetEngineFrom [fileName]
• Restore the engine status from the given file name

• The directory were file is stored had to be previously set by /random/setDirectoryName

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 6

Controlling/piloting the random
number engine with C++
• Previous interactive commands are exploiting existing C++ methods that

provide the functionalities.

• Common methods used:
• Set the seed(s):

• G4Random::setSeed(long seed, int);

• G4Random::setSeeds(const long * seeds, int);

• Save the engine status into a file:
• G4Random::saveEngineStatus(const char filename[] = "Config.conf");

• Restore the engine status from a file:
• G4Random::restoreEngineStatus(const char filename[] = "Config.conf");

• Display the engine status:
• G4Random::showEngineStatus();

• More can be found in documentation and in base class header file:
• geant4/source/externals/clhep/include/CLHEP/Random/RandomEngine.h

• You may need some of the above methods in today’s exercise.
• Note : you may build you file names with “std::ostringstream fileName;” and to get the

“char *” do “fileName.str().c_str();”

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 7

Summary

• In a first approach, you don’t need to care about random number
configuration in Geant4
• A default configuration exists

• For more serious needs, you will likely need to
• Set the seed(s)

• To run multiple jobs, statistically independent

• Chose your favorite random number engine

• Save / restore the random number engine status

• For example in case of a crash happening rarely and you want to investigate

• These can be done with
• C++ coding

• Or more simply, interactive commands

• For setting the seed(s) and saving/restoring the random number engine state

Geant4 PHENIICS & IN2P3 Tutorial, 16 – 20 May 2022, Orsay 8

