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Outline

● Extracting useful information
● Sensitive detectors, hits and hits collections
● Other scoring classes 
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Extracting Useful Information 

● Given geometry, physics and primary track generation, Geant4 
does proper physics simulation "silently". 

● You have to add a bit of code to extract information useful to you.

● The user action classes, if provided, are called by Geant4 
kernel during all phases of tracking and have access to “theirs” 
Geant4 objects:

●  G4Run, G4Event, G4Track, G4Step
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Geant4 and User Application 

Event Processing
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the information about tracked particles from Geant4 objects
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Example

● Using G4Event information in Event action to print event 
number at the beginning of event

#include "EventAction.hh"
#include "G4Event.hh"

EventAction::BeginOfEventAction(const G4Event* event)
{
  // Get current event number
  G4int eventID = event->GetEventID();

  // Print this info on the screen
  G4cout << “Starting event: “ << eventID << G4endl;
}

EventAction.cc
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Geant4 and User Application 

Event Processing (2)
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A special user class, sensitive detector, can be attached to (a) selected 
volume(s) and then called during event processing
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Sensitive Detectors
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Extracting Useful Information (2) 

● During stepping, two user classes can be called
● User stepping action – called in each step

● User sensitive detector – called only when a track passes a  “sensitive” 
volume

● Both have access to G4Step

– Example of code where we use G4Step  to access the track position

  // Get G4Step object
  G4Step* step = ...
  
  // Get the position of the step start (pre-step point) 
  G4StepPoint* preStepPoint = step->GetPreStepPoint();
  G4ThreeVector position = preStepPoint->GetPosition();

  // Print this info on the screen
  G4cout << “This step position: “ << position  << G4endl;
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Sensitive Detector

● A sensitive detector is assigned to a logical volume
● The sensitive detectors are invoked when a step takes place in the logical 

volume that they are assigned to

The sensitive detector will be
invoked all in the steps inside 
a sensitive volume
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track step step point

Stepping
Action



I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 10

Sensitive Detector Class

● A sensitive detector is defined in a user class, MySD, derived 
from G4VSensitiveDetector base class

● It defines the following user functions which are invoked by Geant4 
kernel during event processing:

– At begin of event:                                 Initialize()
– In a step (if in the associated volume):  ProcessHits(..)
– At end of event:                                     EndOfEvent(..)

● Note that User stepping action defines only a function invoked 
when processing a step
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Sensitive Detector Class 

Header

#include "G4VSensitiveDetector.hh"
...
class MySD : public G4VSensitiveDetector {
public:
  MySD(const G4String& name);
  virtual ~MySD();

  virtual void   Initialize(G4HCofThisEvent* hce);
  virtual G4bool ProcessHits(G4Step* step,             
                  G4TouchableHistory* ROhistory);
  virtual void   EndOfEvent(G4HCofThisEvent* hce);
};

The user functions 
called by Geant4  kernel

MySD.hh
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Defining a Sensitive Detector
● Sensitive detector objects are constructed and assigned to logical volumes in 

a user detector construction class in ConstructSDandField() function
● Creating SD object:

● Each sensitive detector object must have a unique name.
● More than one sensitive detector instances (objects) of the same type (class) can 

be defined with different names
● The created SD object must be registered to G4SDManager 

DetectorConstruction.cc

// create a sensitive detector object

G4VSensitiveDetector* mySD = new MySD("MySD");

// register this sensitive detector in SDManager

G4SDManager::GetSDMpointer()->AddNewDetector(mySD);
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Assigning a Sensitive Detector 
to a Logical Volume

● Explicit setting to G4LogicalVolume
● Using the SetSensitiveDetector function is defined in the G4LogicalVolume  class

● Via the volume name
● Using the  SetSensitiveDetector function is defined in the 

G4VUserDetectorConstruction base class

// defined previously

G4VSensitiveDetector* mySD = ... 

SetSensitiveDetector(“MyLVName”, mySD);

// defined previously

G4LogicalVolume* myLogicalVolume = ...;  

G4VSensitiveDetector* mySD = ...;

// assign this sensitive detector to a logical volume

myLogicalVolume->SetSensitiveDetector(mySD);

DetectorConstruction.cc
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Hits and Hits Collections
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A Hit

● Hit is a snapshot of the physical interaction of a track or an accumulation of 
interactions of tracks in the sensitive region of your detector

● Depending on your application you may be interested in various types 
information: 

● position and time of the step, momentum and energy of the track, energy 
deposition of the step, geometrical information, …

Sensitive 
Detector

track step step point

Stepping
Action
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User Hit Class
class MyHit

{

public:

  MyHit();

  // set/get methods; eg.

  void     SetEdep (G4double edep);

  G4double GetEdep() const;

private:

  // some data members; eg.

  G4double fEdep;  // energy deposit

};

● You can store various types 
information by implementing 
your own concrete Hit class.

● In this example  we store the 
energy deposition of the 
step 

● Typically for each information to 
be stored in a hit we add:

MyHit.hh

Data member G4type  fData; G4double fEdep;

Set function void SetData(G4type  data); void  SetEdep(G4double edep):

Get function G4type GetData() const; G4double GetEdep() const;
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Create a Hit

● A hit can be created e.g.  when a step takes place in a sensitive logical 
volume, in a user sensitive detector function ProcessHits(..)

  // Create a hit object

  MyHit* newHit = new MyHit();

  // Get some properties from G4Step and set them to the hit

  // newHit->SetXYZ();

  G4double edep = step->GetTotalEnergyDeposit();

  newHit->SetEdep(edep);}

MySD.cc
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Hits Collections

● Many hits can be created during one event
● Hit objects must be stored in a dedicated collection
● Geant4 provides a dedicated class,  G4THitsCollection, which allows to 

associate the hits collections with G4Event object and can be then accessed 
● through G4Event at the end of event, to be used for analyzing an event

● through G4SDManager during processing an event, to be used for event 
filtering.

● When using Geant4 hits collections, the user hit class must derive from 
G4VHit base class

● Users may also define their own hits collections, eg.
● Using STL library: std::vector<MyHit>

● Using their application framework, eg. in the context of ROOT, it can be 
a ROOT collection (TObjArray, TClonesArray)



I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 19

User Geant4 Hit Class

● Hits collection of a concrete hit class is defined as a specialization of the 
G4THitsCollection template class

● Note the analogy of G4THitsCollection<MyHit> with std::vector<MyHit>

● To avoid long names we define a name shortcut using typedef

MyHit.hh

#include "G4VHit.hh"

class MyHit : public G4VHit

{

  // the class definition as before

  // utility functions (called by Geant4)

  virtual void Draw();

  virtual void Print();

};

#include "G4THitsCollection.hh"

typedef G4THitsCollection<MyHit> MyHitsCollection;

When using Geant4 
hits collections, 
the user hit class
must derive from G4VHit 

Geant4 hits collection 
for MyHit objects
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G4Allocator
● Creation / deletion of an object is a heavy operation.

● It may cause a performance concern, in particular for objects that are 
frequently instantiated / deleted like hits.

● Geant4 provides the G4Allocator class which provides functions 
for efficient memory allocation and de-allocation

● It allocates a chunk of memory space for objects of a certain class.

● The same pattern can be used in all user classes, its is 
sufficient just to put the relevant user class name
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G4Allocator (2)
● The pattern (in green) 

can be cut & pasted in 
your hit (and other) 
classes

● Then you need just to 
replace MyHit with 
your class name

#include "G4Allocator.hh"
class MyHit : public G4VHit {
    // ...
    inline void* operator new(size_t);
    inline void  operator delete(void* hit);    
    // ...
};
extern G4Allocator<MyHit>* MyHitAllocator;

inline void* MyHit::operator new(size_t) {

  return (void*)MyHitAllocator->MallocSingle();

}

inline void MyHit::operator delete(void* hit) {

  MyHitAllocator->FreeSingle((MyHit*)hit);

}

 

MyHit.hh

// ...
G4Allocator<MyHit>* MyHitAllocator;
// ..

 
MyHit.cc
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Implementing Sensitive Detector 
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Sensitive Detector Class

Constructor

● The class constructor is called by the user when creating the sensitive 
detector object(s) in a detector construction class

● The sensitive detector name is passed in the base class constructor where it is saved in 
the SensitiveDetectorName data member

void MySD::MySD(const G4String& name)

  : G4VSensitiveDetector(name)

{}

MySD.cc
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Define Hits Collection

in Initialize

● This method is invoked at the beginning of each event
● The hits collection object (fHitsCollection) is created

● The G4THitsCollection constructor requires 2 arguments: a sensitive detector 
name and a hits collection name 

● It can be also attached to the G4HCofThisEvent object given in the argument, it 
is then available via G4Event object (Not shown in our tutorial)

MySD.cc

void MySD::Initialize(G4HCofThisEvent* /*hce*/)

{

  // Define a hits collection name

  G4String hcName = SensitiveDetectorName + "HitsCollection";

  // Create a hits collection object

  fHitsCollection =

    new MyHitsCollection(SensitiveDetectorName, hcName);

}
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Filling A Hits Collection

in ProcessHits
void MySD::ProcessHits(G4Step* step,                         
                       G4TouchableHistory* /*history*/)

{

  // Create a hit

  MyHit* newHit = new MyHit();

  // Set some properties to the hit newHit→SetXYZ();

  // Add the hit in the SD hits collection

  fHitsCollection->insert(newHit);

}

MySD.cc

● This method is invoked at each step in the associated volume
● The hits are usually inserted in the hits collection when they are 

created
● Besides ProcessHits(), hits can be also created in Initialize().
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Filling A Hits Collection

● The way how the hits collections are filled depends on a detector type
● A tracker detector typically generates a hit for every single step of 

every single (charged) track
● Hits are created in MySD::ProcessHits()

● They typically contain position and time, energy deposition of the step, track ID

● A calorimeter detector typically generates a hit for every cell, and 
accumulates energy deposition in each cell for all steps of all tracks

● Hits are created in MySD::Initialize() and then updated in MySD::ProcessHits()

● They typically contain sum of deposited energy, Cell ID
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Iterate over A Hits Collection

in EndOfEvent

● This method is invoked at the end of processing an event.
● It is invoked even if the event is aborted

● It is invoked before UserEventAction::EndOfEventAction

void MySD::EndOfEvent(G4HCofThisEvent* /*hce*/)

{

  G4int nofHits = fHitsCollection->entries();

  G4cout << nofHits << " hits: " << G4endl;

  for ( G4int i=0; i<nofHits; ++i ) {

    (*fHitsCollection)[i]->Print();

  }

}

MySD.cc
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Other Scoring Classes
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Other Scoring Classes

● On the top of the sensitive detectors and hits framework, 
Geant4 provides also classes for scoring ready to be used

● Users do not need to develop SD and Hits classes

● G4MultiFunctionalDetector can be attached to users logical 
volume and configured using Geant4 scorer classes to score 
selected quantities (eg. energy deposit, dose deposit etc.)

● See e.g. basic example B4d

● Command based scoring
● Built-in scoring mesh can defined via UI commands and configures with 

various scorers for commonly-used physics quantities such as dose, 
flux, etc.

● See RE03, RE04 extended examples in runAndEvent category

● Discussed in more detail in the last scoring presentation
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Summary

● The Geant4 toolkit provides dedicated classes/tools for user 
scoring:

● Sensitive detectors

and the following (not covered in this session):
● Geant4 scorers

● Command-based scoring
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