
Scoring - 1

I. Hrivnacova, IJCLab Orsay

Credits M. Asai (SLAC), G. Folger (CERN) and others

Geant4 IN2P3 and ED PHENIICS Tutorial,
16 – 20 May 2022, IJCLab

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 2

Outline

● Extracting useful information
● Sensitive detectors, hits and hits collections
● Other scoring classes

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 3

Extracting Useful Information

● Given geometry, physics and primary track generation, Geant4
does proper physics simulation "silently".

● You have to add a bit of code to extract information useful to you.

● The user action classes, if provided, are called by Geant4
kernel during all phases of tracking and have access to “theirs”
Geant4 objects:

● G4Run, G4Event, G4Track, G4Step

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 4

Geant4 and User Application

Event Processing

Geant4

User
Application

track step step point

secondary
track

PreTracking
Action

User classes are called during event processing and can collect
the information about tracked particles from Geant4 objects

PostTracking
Action

Stepping
Action

G4Step G4TrackG4Track

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 5

Example

● Using G4Event information in Event action to print event
number at the beginning of event

#include "EventAction.hh"
#include "G4Event.hh"

EventAction::BeginOfEventAction(const G4Event* event)
{
 // Get current event number
 G4int eventID = event->GetEventID();

 // Print this info on the screen
 G4cout << “Starting event: “ << eventID << G4endl;
}

EventAction.cc

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 6

Geant4 and User Application

Event Processing (2)

Geant4

User
Application

track step step point

secondary
track

PreTracking
Action

A special user class, sensitive detector, can be attached to (a) selected
volume(s) and then called during event processing

PostTracking
Action

Stepping
Action

G4Step G4Step G4TrackG4Track

Sensitive
Detector

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 7

Sensitive Detectors

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 8

Extracting Useful Information (2)

● During stepping, two user classes can be called
● User stepping action – called in each step

● User sensitive detector – called only when a track passes a “sensitive”
volume

● Both have access to G4Step

– Example of code where we use G4Step to access the track position

 // Get G4Step object
 G4Step* step = ...

 // Get the position of the step start (pre-step point)
 G4StepPoint* preStepPoint = step->GetPreStepPoint();
 G4ThreeVector position = preStepPoint->GetPosition();

 // Print this info on the screen
 G4cout << “This step position: “ << position << G4endl;

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 9

Sensitive Detector

● A sensitive detector is assigned to a logical volume
● The sensitive detectors are invoked when a step takes place in the logical

volume that they are assigned to

The sensitive detector will be
invoked all in the steps inside
a sensitive volume

Sensitive
Detector

track step step point

Stepping
Action

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 10

Sensitive Detector Class

● A sensitive detector is defined in a user class, MySD, derived
from G4VSensitiveDetector base class

● It defines the following user functions which are invoked by Geant4
kernel during event processing:

– At begin of event: Initialize()
– In a step (if in the associated volume): ProcessHits(..)
– At end of event: EndOfEvent(..)

● Note that User stepping action defines only a function invoked
when processing a step

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 11

Sensitive Detector Class

Header

#include "G4VSensitiveDetector.hh"
...
class MySD : public G4VSensitiveDetector {
public:
 MySD(const G4String& name);
 virtual ~MySD();

 virtual void Initialize(G4HCofThisEvent* hce);
 virtual G4bool ProcessHits(G4Step* step,
 G4TouchableHistory* ROhistory);
 virtual void EndOfEvent(G4HCofThisEvent* hce);
};

The user functions
called by Geant4 kernel

MySD.hh

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 12

Defining a Sensitive Detector
● Sensitive detector objects are constructed and assigned to logical volumes in

a user detector construction class in ConstructSDandField() function
● Creating SD object:

● Each sensitive detector object must have a unique name.
● More than one sensitive detector instances (objects) of the same type (class) can

be defined with different names
● The created SD object must be registered to G4SDManager

DetectorConstruction.cc

// create a sensitive detector object

G4VSensitiveDetector* mySD = new MySD("MySD");

// register this sensitive detector in SDManager

G4SDManager::GetSDMpointer()->AddNewDetector(mySD);

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 13

Assigning a Sensitive Detector
to a Logical Volume

● Explicit setting to G4LogicalVolume
● Using the SetSensitiveDetector function is defined in the G4LogicalVolume class

● Via the volume name
● Using the SetSensitiveDetector function is defined in the

G4VUserDetectorConstruction base class

// defined previously

G4VSensitiveDetector* mySD = ...

SetSensitiveDetector(“MyLVName”, mySD);

// defined previously

G4LogicalVolume* myLogicalVolume = ...;

G4VSensitiveDetector* mySD = ...;

// assign this sensitive detector to a logical volume

myLogicalVolume->SetSensitiveDetector(mySD);

DetectorConstruction.cc

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 14

Hits and Hits Collections

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 15

A Hit

● Hit is a snapshot of the physical interaction of a track or an accumulation of
interactions of tracks in the sensitive region of your detector

● Depending on your application you may be interested in various types
information:

● position and time of the step, momentum and energy of the track, energy
deposition of the step, geometrical information, …

Sensitive
Detector

track step step point

Stepping
Action

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 16

User Hit Class
class MyHit

{

public:

 MyHit();

 // set/get methods; eg.

 void SetEdep (G4double edep);

 G4double GetEdep() const;

private:

 // some data members; eg.

 G4double fEdep; // energy deposit

};

● You can store various types
information by implementing
your own concrete Hit class.

● In this example we store the
energy deposition of the
step

● Typically for each information to
be stored in a hit we add:

MyHit.hh

Data member G4type fData; G4double fEdep;

Set function void SetData(G4type data); void SetEdep(G4double edep):

Get function G4type GetData() const; G4double GetEdep() const;

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 17

Create a Hit

● A hit can be created e.g. when a step takes place in a sensitive logical
volume, in a user sensitive detector function ProcessHits(..)

 // Create a hit object

 MyHit* newHit = new MyHit();

 // Get some properties from G4Step and set them to the hit

 // newHit->SetXYZ();

 G4double edep = step->GetTotalEnergyDeposit();

 newHit->SetEdep(edep);}

MySD.cc

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 18

Hits Collections

● Many hits can be created during one event
● Hit objects must be stored in a dedicated collection
● Geant4 provides a dedicated class, G4THitsCollection, which allows to

associate the hits collections with G4Event object and can be then accessed
● through G4Event at the end of event, to be used for analyzing an event

● through G4SDManager during processing an event, to be used for event
filtering.

● When using Geant4 hits collections, the user hit class must derive from
G4VHit base class

● Users may also define their own hits collections, eg.
● Using STL library: std::vector<MyHit>

● Using their application framework, eg. in the context of ROOT, it can be
a ROOT collection (TObjArray, TClonesArray)

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 19

User Geant4 Hit Class

● Hits collection of a concrete hit class is defined as a specialization of the
G4THitsCollection template class

● Note the analogy of G4THitsCollection<MyHit> with std::vector<MyHit>

● To avoid long names we define a name shortcut using typedef

MyHit.hh

#include "G4VHit.hh"

class MyHit : public G4VHit

{

 // the class definition as before

 // utility functions (called by Geant4)

 virtual void Draw();

 virtual void Print();

};

#include "G4THitsCollection.hh"

typedef G4THitsCollection<MyHit> MyHitsCollection;

When using Geant4
hits collections,
the user hit class
must derive from G4VHit

Geant4 hits collection
for MyHit objects

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 20

G4Allocator
● Creation / deletion of an object is a heavy operation.

● It may cause a performance concern, in particular for objects that are
frequently instantiated / deleted like hits.

● Geant4 provides the G4Allocator class which provides functions
for efficient memory allocation and de-allocation

● It allocates a chunk of memory space for objects of a certain class.

● The same pattern can be used in all user classes, its is
sufficient just to put the relevant user class name

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 21

G4Allocator (2)
● The pattern (in green)

can be cut & pasted in
your hit (and other)
classes

● Then you need just to
replace MyHit with
your class name

#include "G4Allocator.hh"
class MyHit : public G4VHit {
 // ...
 inline void* operator new(size_t);
 inline void operator delete(void* hit);
 // ...
};
extern G4Allocator<MyHit>* MyHitAllocator;

inline void* MyHit::operator new(size_t) {

 return (void*)MyHitAllocator->MallocSingle();

}

inline void MyHit::operator delete(void* hit) {

 MyHitAllocator->FreeSingle((MyHit*)hit);

}

MyHit.hh

// ...
G4Allocator<MyHit>* MyHitAllocator;
// ..

MyHit.cc

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 22

Implementing Sensitive Detector

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 23

Sensitive Detector Class

Constructor

● The class constructor is called by the user when creating the sensitive
detector object(s) in a detector construction class

● The sensitive detector name is passed in the base class constructor where it is saved in
the SensitiveDetectorName data member

void MySD::MySD(const G4String& name)

 : G4VSensitiveDetector(name)

{}

MySD.cc

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 24

Define Hits Collection

in Initialize

● This method is invoked at the beginning of each event
● The hits collection object (fHitsCollection) is created

● The G4THitsCollection constructor requires 2 arguments: a sensitive detector
name and a hits collection name

● It can be also attached to the G4HCofThisEvent object given in the argument, it
is then available via G4Event object (Not shown in our tutorial)

MySD.cc

void MySD::Initialize(G4HCofThisEvent* /*hce*/)

{

 // Define a hits collection name

 G4String hcName = SensitiveDetectorName + "HitsCollection";

 // Create a hits collection object

 fHitsCollection =

 new MyHitsCollection(SensitiveDetectorName, hcName);

}

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 25

Filling A Hits Collection

in ProcessHits
void MySD::ProcessHits(G4Step* step,
 G4TouchableHistory* /*history*/)

{

 // Create a hit

 MyHit* newHit = new MyHit();

 // Set some properties to the hit newHit→SetXYZ();

 // Add the hit in the SD hits collection

 fHitsCollection->insert(newHit);

}

MySD.cc

● This method is invoked at each step in the associated volume
● The hits are usually inserted in the hits collection when they are

created
● Besides ProcessHits(), hits can be also created in Initialize().

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 26

Filling A Hits Collection

● The way how the hits collections are filled depends on a detector type
● A tracker detector typically generates a hit for every single step of

every single (charged) track
● Hits are created in MySD::ProcessHits()

● They typically contain position and time, energy deposition of the step, track ID

● A calorimeter detector typically generates a hit for every cell, and
accumulates energy deposition in each cell for all steps of all tracks

● Hits are created in MySD::Initialize() and then updated in MySD::ProcessHits()

● They typically contain sum of deposited energy, Cell ID

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 27

Iterate over A Hits Collection

in EndOfEvent

● This method is invoked at the end of processing an event.
● It is invoked even if the event is aborted

● It is invoked before UserEventAction::EndOfEventAction

void MySD::EndOfEvent(G4HCofThisEvent* /*hce*/)

{

 G4int nofHits = fHitsCollection->entries();

 G4cout << nofHits << " hits: " << G4endl;

 for (G4int i=0; i<nofHits; ++i) {

 (*fHitsCollection)[i]->Print();

 }

}

MySD.cc

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 28

Other Scoring Classes

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 29

Other Scoring Classes

● On the top of the sensitive detectors and hits framework,
Geant4 provides also classes for scoring ready to be used

● Users do not need to develop SD and Hits classes

● G4MultiFunctionalDetector can be attached to users logical
volume and configured using Geant4 scorer classes to score
selected quantities (eg. energy deposit, dose deposit etc.)

● See e.g. basic example B4d

● Command based scoring
● Built-in scoring mesh can defined via UI commands and configures with

various scorers for commonly-used physics quantities such as dose,
flux, etc.

● See RE03, RE04 extended examples in runAndEvent category

● Discussed in more detail in the last scoring presentation

I. Hrivnacova @ Geant4 IN2P3 and ED PHENIICS Tutorial, 2022, IJCLab 30

Summary

● The Geant4 toolkit provides dedicated classes/tools for user
scoring:

● Sensitive detectors

and the following (not covered in this session):
● Geant4 scorers

● Command-based scoring

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

