Event Biasing

Geant4 PHENIICS & ANF IN2P3 Tutorial, 22 – 26 May 2023, Orsay

Marc Verderi LLR, Ecole polytechnique

Overview

- I. Introduction
- II. Existing Biasing Options before v10.0
 - Primary Particle Biasing
 - Options In Hadronic
 - Geometry based importance biasing
 - Weight Window Technique
 - User defined biasing
- III. Reverse Monte-Carlo
- IV. Generic Biasing Scheme

I. Introduction

Rare events

- > There are simulation problems in which what we are interesting in is "rare"
 - rare because of the physics,
 - or because of the setup,
 - Or both, etc.
- > Examples of such problems:
 - Estimating the efficiency of a shield
 - > A large flux enters a shield...
 - > ... with a lot of interactions inside, which is CPU intensive
 - ... and only a tiny fraction of particles exiting : the rare ones.

Obtaining the response of a very thin detector

- > For example to obtain the response to neutrons
- > Most of them do not interact in
- > But the signal is made by the rare ones which interact

- Estimating the dose in a very small part of a big setup

- > For example an electronic chip inside a satellite
- Most of the time is spent in simulating showers that do not contribute the dose
- > While we want to tally this dose

Volume in which we want to estimate the dose

Incident flux

Rare interactions

making the signal

Remaining flux we want to estimate

Thick shield/

Thin detector

An "analog" (usual) simulation is <u>very inefficient</u> in addressing these problems.

What is "event biasing" ?

- "Event biasing" (or "biasing" or "variance reduction") is a set of techniques to simulate rare events efficiently
 - It is an accelerated simulation with respect to these events
 - > And to these events only : ie not everywhere !
 - It focuses/transfers the CPU power usage on what we want to tally

- It can provide LARGE CPU improvements
 - > Several orders of magnitude ! Depending on the problem.
- "Biasing" stands for "biased simulation":
 - "Biased" because rare events are enhanced compared to the analog simulation.

Main principles

> There is a large variety of techniques (sometimes with ≠ names for ≈ techniques) but there essentially two underneath classes of techniques:

- > Enhancement of rare events is tracked with statistical "weights":
 - Weights are used to "de-bias" and go back to analog quantities:
 - > Eg: $E_{deposit} = \sum_{i=track} weight_i \times E^i_{deposit}$

Track i, weight i

Examples of importance sampling techniques

> The "exponential transform" technique

- It is a change of the total cross-section
- Often made direction dependent
- The usual/analog exponential law is replaced by an other law (still an exponential one here, but with different cross-section)

• Forcing the interaction in a thin volume:

 The usual/analog exponential law is replaced by a "truncated" exponential law (not the only possible choice) that does not extend beyond the volume limit

Volume in which we want the interaction to be forced

Example of splitting

> A classical application of splitting is the "shield" simulation problem

In above example, particles moving toward exit are cloned

- > cloning is for compensating the physical absorption in the shield material
- When cloning happens, clones receive a weight ½ (here) of the initial track

> Splitting comes together with « killing » / « Russian Roulette »

- For particles going opposite direction than the one we want
- In above example, particles moving backward are killed with a (here) probability ½ and, if it survives, its weight is multiplied by 2 (here).
- In this case you kill the "too numerous" particles
 - > This is a **"population control"** technique, which is sometimes used alone in some problems
 - > It is used for example in CMS, for slow neutrons

Biasing versus other acceleration techniques ? **Analog Simulation** CPU usage

Area for

fast event

biasing

Rare events

simulation

Bulk of

simulation

- Other acceleration techniques exist:
 - "fast simulation" : use approximate but faster model (eg: EM showers)
 - Accelerates the bulk of the simulation
 - Deterministic computation
 - in some cases (eg : medical, space)
 - no such techniques in Geant4

Strength of biasing:

- The physics at play in biasing is the *same* than with the detailed simulation
 - Biasing is "simply" an other way to process the full detailed physics
- So, results obtained with biasing are statistically the same than the ones obtained with a large/huge processing of standard simulation

Difficulties with biasing:

- Only "rare events" problems can be treated this way (by nature)
- Ensuring a proper convergence can be difficult
 - Issue of random appearance of very large weights
 - that destroy the convergence
 - This signs that parts of the problem are not sampled enough (ex. in backup slides)

II. Existing Biasing Options before v10.0

Primary Particle Biasing

- > The General Particle Source (GPS) allows to bias the particle source:
 - Position
 - Angular Distribution
 - Energy Distribution
- > This is an "importance sampling" biasing
 - The physical distributions are replaced by biased ones
- Primary particles are given a weight that is the ratio of analog / biased probabilities
 - In the simulation, all daughter, gran-daughter,... particles from the primary inherit the weight of this primary

Options In Hadronic (1)

> Cross-section Biasing:

- Possibility to enhance a (low) cross-section
 - > This an "importance sampling" approach
- Available for photon inelastic, electron & positron nuclear processes

//init reaction model
G4ElectroNuclearReaction* theElectroReaction = new G4ElectroNuclearReaction();

//create process and register model
G4ElectronNuclearProcess theElectronNuclearProcess;
theElectronNuclearProcess.RegisterMe(theElectroReaction);

//apply biasing
theElectronNuclearProcess.BiasCrossSectionByFactor(100);

//register process

pManager->AddDiscreteProcess(&theElectronNuclearProcess);

- (no messenger for this?)

Options In Hadronic (2)

> Leading Particle Biasing:

- It is a technique used for estimating the penetration of particles in a shield
- Instead of simulating the full shower, at each interaction, only keep:
 - > The most energetic particle
 - > + randomly one particle of each species
- This is a « killing » based biasing

> Radioactive decay

- Enhance particular decay within a given time window
- Sample all decay modes with equal probabilities
- Split parent nuclide in a user defined number of copies, letting the decay go
- Enhance emission in a particular direction

Geometry based importance biasing

- > A direct application of what was presented earlier here
- > Attach "importance" to cells in geometry
 - Not to be confused with "importance sampling" : ie change of probability density functions of interaction laws

- Applies splitting if the track moves forward
 - > with splitting factor 8/4 = 2, if track goes from « 4 » to « 8 » (eg, here)
 - > each copy having a weight = $\frac{1}{2}$ of the incoming track
- Applies killing if the track moves the other way
 - $\,\,$ it is killed with a probability $^{\prime\!\!/}_{\!\!\!2}$
 - > If particle survives, its weight is multiplied by 2 (eg, here)

Geometry based importance biasing

 Geometry cells, meant to carry importance values, are created and associated to physical volumes in the detector construction:

G4IStore *istore = G4IStore::GetInstance();

// Loop on physical volumes:

Replica number, if any —

istore->AddImportanceGeometryCell(importanceValue, physicalVolumePointer [, nReplica]);

- All volumes should be given an importance value.
- Biasing may be applied to some particle type only: eg neutron. In the main program, this is specified as:

G4GeometrySampler geometrySample(worldVolume, "neutron");

- (worldVolume specified as there is the ability to define cells in a parallel geometry: not discussed here)
- The actual splitting and killing are handled by dedicated processes. These are to be inserted in the physics list. If using a modular physics, it is done as: G4VModularPhysicsList* physicsList = new FTFP_BERT;

physicsList->RegisterPhysics(new G4ImportanceBiasing(&geometrySampler));

- > More details can be found in examples:
 - examples/extended/biasing/B01 : geometry biasing with importance cells or weight window
 - examples/extended/biasing/B02 : same, with cells in a parallel geometry
 - examples/extended/biasing/B03 : same, for the case of a non modular physics list

Example B01 - 10 MeV neutrons, thick concrete cylinder

Analogue Simulation

Importance Sampled

See: geant4/examples/extended/biasing/B01

Weight Window Technique

> This is a « splitting & killing » technique, to avoid having

- Too high weight tracks at some point
 - > As this makes the convergence of the estimated quantities difficult
 - > Tracks with weight above some value are splitted
- Too low weight tracks
 - > As these are essentially a waste of time
 - > Tracks below some value are "Russian roulette" killed

- > As with importance, this is configured per cell
 - And can be configured per energy
- > See: geant4/examples/extended/biasing/B01

User defined biasing

- G4WrapperProcess can be used to implement user defined event biasing
- G4WrapperProcess, which is a process itself, wraps an existing process
- > All function calls forwarded to wrapped process

> Needed steps:

- 1. Create derived class inheriting from G4WrapperProcess
- 2. Override only the methods to be modified, e.g., PostStepDolt()
- 3. Register this class in place of the original
- 4. Finally, register the original (wrapped) process with user class

Example with brem. splitting

Bremstralhung splitting is a technique used for example in medical applications:

- Radio-therapy with photon beam generated by bremstralhung
- Interest is in generated photons, not in the electron \rightarrow enhance photon production
- The bremstralhung process is repeated N times, with the same initial electron
 - All bremstralhung photons are given a weight 1/N
 - The electron continues with one of the state among the N ones generated

G4VParticleChange* myWrappedProc::PostStepDoIt(const G4Track& track, const G4Step& step)
{

```
G4double weight = track.GetWeight()/fNSplit;
```

```
std::vector<G4Track*> secondaries(fNSplit);
```

Example with a brem. splitting

> Note: Since 9.6, a built-in brem. splitting option is now proposed.

III. Reverse Monte-Carlo

Reverse Monte Carlo

- > Simulation in which particles go back in time !
- Useful in case of small device to be simulated in a big environment
 - Requested by ESA, for dose study in electronic chips in satellites
- > Simulation starts with the red track
 - So-called "adjoint" track
 - Going back in time
 - Increasing in energy
 - Up to reaching the extended source

Reverse Monte Carlo

- > Simulation in which particles go back in time !
- Useful in case of small device to be simulated in a big environment
 - Requested by ESA, for dose study in electronic chips in satellites
- > Simulation starts with the red track
 - So-called "adjoint" track
 - Going back in time
 - Increasing in energy
 - Up to reaching the extended source
- If track energy < high energy limit of the sky source spectrum</p>
 - Proceed with a usual "forward" simulation (green track)
- When many track simulated, adjust adjoint track weights so that energy spectrum of adjoint particle matches sky source spectrum
 - This provides the weight of the green tracks
- Dose in chip can then be computed, accounting for the forward track contribution, with the proper weight.
- See: geant4/examples/extended/biasing/ReverseMC01

Extended source

Forward (normal) track

Example of convergence speed

- Electron dose with ESA "Spacecraft_test" geometry
- Middle Erath Orbit spectrum
- Courtesy of Laurent Desorgher (chuv)

GEANT4 PHENIICS & ANF IN2P3 TUTORIAL, 22 - 26 MAY 2023

IV. Generic Biasing Scheme

Generic biasing scheme ?

- > Scheme introduced since 10.0:
 - Provide general scheme than can cope with all options
 - Can be extended by user

> Classical "object oriented" (OO) approach:

- Abstract layer, general enough
- It handles:
 - Physics process biasing
 - Splitting and killing

- \rightarrow denoted as "physics biasing"
- \rightarrow denoted as "non-physics biasing"

Layer open to users

- > For implementing their own techniques
- Maximal information provided to daughter class, to help making decisions
- Implementation of options ready to go
 - Based on this layer

> Hoping this will favor users' creativity !

Modularity ?

> Example of "force collision" scheme à la MCNP

Thin detector volume

Particle « cloning » at entrance

Incoming particle, weight = w_0 Forced uncollided part, also called Forced Flight weight = $w_0 e^{-\sigma L}$

Forced collided part, weight = $w_0(1-e^{-\sigma L})$ Collision distance ℓ sampled as: $\sigma e^{-\sigma \ell}/(1-e^{-\sigma L})$

> Approach considered:

- Instead of providing the above scheme in one go
- Consider "atomic" "biasing operations"
 - > splitting, forced free flight, forced interaction, etc.
- Compose these with a "biasing operator"
 - > that selects, step after step, the biasing operations to build the desired biasing scheme
 - which is interfaced with the tracking to make its desired operations applied

Main Components

> G4VBiasingOperation

- An abstract class
- Can act on a physics process:
 - > By modifying its interaction law
 - By modifying its final state generation
- Can act by itself
 - > To split or randomly kill particles

G4VBiasingOperator

- An abstract class
- Selects G4VBiasingOperation's
 - > At the beginning of the step
 - > At the final state generation level
- This is the entity which is making all the decisions

G4BiasingProcessInterface G4GammaConversion

G4BiasingProcessInterface

(no process)

> G4BiasingProcessInterface

- A concrete class
- Which can wrap a physics process, to bias it
 - > Applying "physics biasing" options
- Which can have no process, to apply splitting & killing techniques
 - > Applying "non-physics biasing options"
- It "discusses" with the current G4VBiasingOperator (if any) to get its decisions about what "physics biasing" and/or "non-physics biasing" options to apply

"physics biasing"

GetPostStepPhysicalInteractionLength()

- Returns the distance at which the process will make an interaction
- Analog exponential law is at play

PostStepDolt()

- Called if the process has responded the shortest of the interaction distances
- Generate final state, according to specific process analog physical law

"physics biasing"

1. GetPostStepPhysicalInteractionLength()

- Returns the distance at which the process will make an interaction
- Analog exponential law is at play
- Above analog behavior superseded by biased behavior (if wished)
- PostStepDolt()
 - Called if the process has responded the shortest of the interaction distances
 - Generate final state, according to specific process analog physical law

"physics biasing"

- 1. GetPostStepPhysicalInteractionLength()
 - Returns the distance at which the process will make an interaction
 - Analog exponential law is at play
 - Above analog behavior superseded by biased behavior (if wished)

PostStepDolt()

- Called if the process has responded the shortest of the interaction distances
- Generate final state, according to specific process analog physical law
- Above analog behavior supersededby biased behavior (if wished)

"physics biasing" + "non-physics biasing"

- 1. GetPostStepPhysicalInteractionLength()
 - Returns the distance at which the process will make an interaction
 - Analog exponential law is at play
 - Above analog behavior superseded by biased behavior (if wished)
 - PostStepDolt()
 - Called if the process has responded the shortest of the interaction distances
 - Generate final state, according to specific process analog physical law
 - Above analog behavior superseded by biased behavior (if wished)
- "non-physics biasing" competes with other processes (as any process)
 - Here, winning the race
 - Here, applying a splitting by 3

How to use

> In the main:

// -- Select a modular physics list FTFP_BERT* physicsList = new FTFP_BERT; // -- And augment it with biasing facilities: G4GenericBiasingPhysics* biasingPhysics = new G4GenericBiasingPhysics(); biasingPhysics->Bias("gamma"); biasingPhysics->Bias("neutron"); physicsList->RegisterPhysics(biasingPhysics); runManager->SetUserInitialization(physicsList);

- More options exist for the G4GenericBiasingPhysics constructor:
 - > Activate biasing for processes only
 - > Or for doing splitting/killing only
 - > Or to activate biasing for all charged
 - > Or all neutral particles
 - > Etc.

In ConstructSDandField() of detector construction:

MyBiasingOperator* biasingOperator = new MyBiasingOperator(); biasingOperator->AttachTo(logicalVolumeToBias);

Existing functionalities & examples

- > geant4/examples/extended/biasing/GB01 :
 - Individual process cross-section biasing
 - Implemented for neutral particles
 - Charged particle case requires development
 - > Issue : variation of cross-section during step because of energy loss
- > geant4/examples/extended/biasing/GB02 :
 - Force collision à la MCNP
 - Implemented for neutral particles (as MCNP)
- > geant4/examples/extended/biasing/GB03 :
 - Geometry importance + further option
 - Scheme augmented compared to classical geometry importance
 - > Allows kinds of "intermediate" non-integer splitting values
- > geant4/examples/extended/biasing/GB04 :
 - Re-implementation of a classical Bremsstrahlung splitting
- > geant4/examples/extended/biasing/GB05 :
 - Illustrates a "splitting by cross-section"
 - An invention (to my knowledge) where the splitting rate is directly adjusted from absorption crosssections
- > geant4/examples/extended/biasing/GB06 :
 - Parallel geometries with generic biasing.
- geant4/examples/extended/biasing/GB07 :
 - Implement a "particle leading" biasing scheme

Summary

- Biasing techniques can provide very large acceleration factors in problems in which we must tally rare events
- > Geant4 proposes biasing options
 - Primary source (GPS), leading particle, cross-section (had), radioactive decay, splitting with importance in geometry, weight window, user biasing with G4WrapperProcess, and bremsstrahlung splitting
 - Reverse Monte-Carlo
- > New "toolkit-like" approach since v10.0
 - Allowing biasing of process interaction and process final state
 - Together with easy mix with killing, splitting, etc.
 - Flexible scheme, allowing implementation of many options, and open to users for further customized extensions
- > Biasing techniques delicate to handle, but sometimes unmissable when dealing with rare event problems !

Backup

Some Words of Caution with Convergence

Introduction

- Biasing techniques are powerful
 - If a technique is well suited to a problem, gains in simulation efficiency by several order of magnitudes are usual
- In contrast to an analog simulation where all "events" have the same weight (==1), biasing is not "democratic"
 - Because of the weight, some events are more important than others
- > This weight disparity may cause convergence problems
 - That can be nasty !
 - What happens is that, from time to time, an event with big weight may come, and change drastically the –say- estimated current mean value
 - Always a fear that this may happen...
- Proper convergence is the issue the user of biasing has to care about
 - And this is the price to pay for using biasing
- > Let's illustrate a "bad convergence case" with a simple problem
 - But this allows to spot the difficulties

Convergence

- > A « toy » example of a bad sampling:
 - We want to estimate the mean value of the unknown « yellow » distribution.
 - As we don't know where it is, we try to sample it with the « blue » distribution

X

Convergence

- > A « toy » example of a bad sampling:
 - We want to estimate the mean value of the unknown « yellow » distribution.
 - As we don't know where it is, we try to sample it with the « blue » distribution

Х

Trials

4000

-0.8 -1

0

2000

GEANT4 PHENIICS & ANF IN2P3 TUTORIAL, 22 - 26 MAY 2023

6000

8000

10000

x 10

Weight distribution...

> Lots of tiny weights...

> Few huge ones...

GEANT4 PHENIICS & ANF IN2P3 TUTORIAL, 22 - 26 MAY 2023

Some qualitative observations

> Observations that can help spotting the inappropriate sampling:

- We have a wide variety of weights
 - > Many tiny ones
 - Waste of time to determine the mean value
 - > Few huge ones
 - Responsible for jumps
 - Such problem –if can not be improved- could at least be alleviated with a weight window technique
 - In a real problem (useless here in our toy problem)
- We have huge weights from time to time
 - > These are not wrong !
 - Temptation would be to "dismiss" these events
 - > But in our case, these events bring down the mean value to the correct value
 - > These are not wrong, but *their presence is a sign of the problematic sampling*
- We observe monotonic increase of the mean value
 - > We are sampling only "one side" of the problem

> Convergence criteria have been established in other packages

- Like MCNP

You are invited at staying critical when using such biasing techniques !

COMPARISON WITH FLUKA AND MCNPX

Few words of caution

- Compare the existing FLUKA and MCNPX functionalities with the existing and planned Geant4 ones:
 - le : comparison is not exactly fair with FLUKA and MCNPX
- > Need to say the above to be fair ;)

FLUKA / Geant4 biasing functionalities

Biasing options in FLUKA from <u>http://www.fluka.org/content/manuals/fluka2011.manual</u>	Options in Geant4, Present, <u>new</u> , or future
Leading particle biasing for electrons and photons: region dependent, below user- defined energy threshold and for selected physical effects.	<u>Done.</u>
Russian Roulette and splitting at boundary crossing based on region relative importance.	Existing and <u>re-done with</u> generic scheme.
Region-dependent multiplicity tuning in high energy nuclear interactions.	Can be done and more general.
Region-dependent biased downscattering and non-analogue absorption of low- energy neutrons. Simple for neutral. More	Can be done.
Biased decay length for increased daughter production. difficult for charged but understood.	Done.
Biased inelastic nuclear interaction length.	Done.
Biased interaction lengths for electron and photon electromagnetic interactions.	Done and validated for gamma.
Biased angular distribution of decay secondary particles.	Can de done.
Region-dependent weight window in three energy ranges (and energy group dependent for low energy neutrons).	Existing. Can be "re-provided" and more general.
Bias setting according to a user-defined logics.	(need more info in FLUKA, but is actual purpose of this dev.)
User-defined neutrino direction biasing.	Can be done, easily.
User-defined step by step importance biasing.	Can be done, easily.

MCNPX / Geant4 biasing functionalities

Biasing options in MCNPX From LA-UR-03-1987, MCNP5 manual	Options in Geant4, Present, <u>new</u> , or future
Energy Cutoff & Time Cutoff	Existing (not considered as biasing)
Geometry Splitting with Russian Roulette	Existing and <u>"re-provided</u> " with generic scheme.
Energy Splitting/Roulette and Time Splitting/Roulette	Can be done easily with generic scheme.
Weight Cutoff	Existing (in some way). Easy in generic scheme.
Weight Window	Existing and will be "re-provided" with new design. Can be made more general.
Exponential Transform	Done (with generic scheme).
Implicit Capture (or "Implicit capture," "survival biasing," and "absorption by weight reduction")	Can be done. Planned for this year.
Forced Collisions	Done (with generic scheme).
Source Variable Biasing	Existing (GPS).
Point Detector Tally (?)	(not biasing ?)
DXTRAN	Planned, need more work. Doable.
Correlated Sampling	Not planned for now "à la MCNP". But doable with user's invest.