Which Physics List To Use ?

Geant4 PHENIICS & ANF IN2P3 Tutorial,

22 – 26 May 2023,

Orsay

Marc Verderi

LLR, Ecole polytechnique

Geant4 PHENIICS & ANF IN2P3 Tutorial, 22 – 26 May 2023, Orsay

Credits...

 Dennis Wright (SLAC), Alberto Ribon (CERN), Davide Mancusi (CEA)

Choosing a Physics List

- Which physics list to use depends on the use-case
- It is convenient and recommended to start with one of the reference physics lists
 - They are routinely validated and updated with each release
 - These should be considered only as starting points which you may need to validate for your needs

(expert +)

(expert ++)

(expert $n \times '+'$, with n >> 1)

- If you need more specialized physics lists you may:
 - Use the G4PhysicsListFactory to build by physics constructor names
 - Handle directly physics list with methods like
 - Write your physics constructor to implement your specialized process (expert ++++)
 - Write your own
- There are currently **23** reference physics lists, of which **11** are used in production:
 - FTFP_BERT, FTFP_BERT_HP, FTFP_BERT_ATL
 - QGSP_BERT, QGSP_BERT_HP
 - QGSP_BIC, QGSP_BIC_AllHP, QGSP_BIC_HP
 - Shielding, ShieldingLEND
 - NuBeam

Physics List Naming Convention

- The following acronyms refer to various hadronic options
 - FTF : Fritiof string model (>~ 3 GeV)
 - QGS : Quark Gluon String model (>~ 12 GeV)
 - BERT : Bertini-style Cascade (~< 10 GeV)</p>
 - BIC : Binary Cascade (~< 10 GeV)
 - P : Precompound model for nuclear de-excitation (~< 150 MeV)
 - HP : High Precision neutron model (< 20 MeV)
- EM options designated by
 - No suffix : standard EM physics
 - _EMV , _EMX : fast options for high-energy physics
 - _EMY , _EMZ , _LIV , _PEN : more precise options, for medical and space science applications

When the application starts...

Large amount of information displayed by the physics list

```
FTFP BERT : new threshold between BERT and FTFP is over the interval
for pions : 3 to 12 GeV
for kaons : 3 to 12 GeV
for proton : 3 to 12 GeV
for neutron : 3 to 12 GeV
conv: for gamma SubType= 14 BuildTable= 1
     Lambda table from 1.022 MeV to 100 TeV, 18 bins per decade, spline: 1
     ===== EM models for the G4Region DefaultRegionForTheWorld ======
       BetheHeitler : Emin= 0 eV Emax= 80 GeV
    BetheHeitlerLPM : Emin= 80 GeV Emax= 100 TeV
Hadronic Processes for anti deuteron
 Process: hadElastic
                       hElasticLHEP: 0 eV /n ---> 100.1 MeV/n
       Model:
       Model: AntiAElastic: 100 MeV/n ---> 100 TeV/n
    Cr sctns: AntiAGlauber: 0 eV ---> 2.88022e+295 J
    Cr sctns:
                   GheishaElastic: 0 eV ---> 100 TeV
 Process: anti deuteronInelastic
               FTFP: 0 eV /n ---> 100 TeV/n
AntiAGlauber: 0 eV ---> 2.88022e+295 J
       Model:
    Cr sctns:
    Cr sctns: GheishaInelastic: 0 eV ---> 100 TeV
```

Process: hFritiofCaptureAtRest

• The most up-to-date information you can find on a given physics list is here !

Reference Physics Lists (1/3)

• FTFP_BERT

- Recommended by Geant4 for HEP
- Contains all standard EM processes
- Uses Bertini-style cascade for hadrons < 5 GeV
- Uses Fritiof model for high energies > 4 GeV
- Uses Precompound + evaporation for nuclear de-excitation
- Includes neutron capture
- Includes nuclear stopping at rest of negatively charged hadrons
- Includes gamma- and electro-nuclear
- No neutron-HP, radioactive decay, optical photons

Reference Physics Lists (2/3)

• QGSP_FTFP_BERT

- All standard EM processes
- Bertini-style cascade for hadrons < 8 GeV
- Quark Gluon String model for high energies > 12 GeV
- Fritiof model in between 6 25 GeV

QGSP_BERT

- All standard EM processes
- Bertini-style cascade for hadrons < 9.9 GeV
- Quark Gluon String model for high energies > 12 GeV
- Fritiof in between 9.5 25 GeV
- NB) We are working to extend QGS at lower energies, so that the transition with BERT can be done directly, without FTF (in this physics list)

Reference Physics Lists (3/3)

• QGSP_BIC

- Same as QGSP_BERT, but replaces Bertini-style cascade with Binary cascade model (+ Precompound model)
- Recommended for use at energies below 200 MeV
 - Many medical applications
 - Suggested EM option: _EMY or _EMZ
- FTFP_BERT_HP (QGSP_BERT_HP)
 - Same as FTFP_BERT (QGSP_BERT), but with the high-precision neutron model used for neutrons below 20 MeV
 - Significantly slower than FTFP_BERT (QGSP_BERT), especially when Doppler broadening on-the-fly is used
 - There is an option to turn this off
 - For radiation protection and shielding applications

Other Physics Lists (1/2)

Shielding

- Based on FTFP_BERT_HP with improved neutron cross sections from JENDL
- Better ion nuclear interactions using QMD model
- Radioactive decay model activated
- Currently used by SuperCDMS dark matter search
- Recommended for:
 - Shielding applications
 - Space physics
 - HEP

• FTFP_INCLXX, FTFP_INCLXX_HP

 Like FTFP_BERT(_HP), but with Bertini-style cascade replaced by INCLXX (Liege) cascade model below 3 GeV

Other Physics Lists (2/2)

• QBBC

- Uses both Bertini-style and Binary cascade models
- Latest coherent elastic scattering
- Neutron XS approach (fairly accurate, but faster then HP)
 - Since G4 10.0 adopted also in other non-HP physics lists

QGSP_BIC_HP

- Same as QGSP_BIC, but with the high precision neutron model used for neutrons below 20 MeV
- Recommended for:
 - Radiation protection
 - Medical applications

Other Physics Lists (based on use-case)

- If primary particle energy in your application is < 5 GeV (for example, clinical proton beam of 150 MeV)
 - start with a physics list which includes BIC or BERT
 - e.g. **QGSP_BIC**, QGSP_BERT, FTFP_BERT, etc.
- If neutron transport is important
 - start with a physics list containing "HP"
 - e.g. QGSP_BIC_HP, FTFP_BERT_HP, etc.
- If you are interested in Bragg curve physics
 - use a physics list ending with _EMY or _EMZ
 - e.g. QGSP_BIC_EMY
- For detailed line emission from EM processes
 - EM options : _EMY , _EMZ , _LIV , _PEN

Using Geant4 Validation to Choose Physics Lists

- Ultimately you must choose a physics list based on how well its component processes and models perform
 - Physics performance
 - CPU performance
- Geant4 provides validation (comparison to data) for most of its physics codes
 - Validation is a continuing task, performed at least as often as each release
 - More validation tests added as time goes on
- To access these comparisons, go to
 - https://geant-val.cern.ch/

https://geant-val.cern.ch/

Summary

- Choosing a physics is a critical decision you have to make when building your application.
- Reference physics lists exist to guide your choice
 - They are continuously monitored
 - And are recommended to start with
- If you need to go to more specific physics, you will have to tailor your physics list
- Using the G4PhysicsListFactory is convenient way to do so
 - Allowing you to compose your physics list using a few tags
 - Other methods exist, but require higher expertise